Skip to main content

A GPU-Based Simulation of Tsunami Propagation and Inundation

  • Conference paper
Algorithms and Architectures for Parallel Processing (ICA3PP 2009)

Abstract

Tsunami simulation consists of fluid dynamics, numerical computations, and visualization techniques. Nonlinear shallow water equations are often used to model the tsunami propagation. By adding the friction slope to the conservation of momentum, it also can model the tsunami inundation. To solve these equations, we use the second order finite difference MacCormack method. Since it is a finite difference method, it brings the possibility to be parallelized. We use the parallelism provided by GPU to speed up the computations. By loading data as textures in GPU memory, the computation processes can be written as shader programs and the operations will be done by GPU in parallel. The results show that with the help of GPU, the simulation can get a significant improvement in the execution time for each of the computation steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tan, W.Y.: Shallow Water Hydrodynamics: Mathematical Theory and Numerical Solution for Two-Dimensional System of Shallow Water Equations. Elsevier Science Publishers, Amsterdam (1992)

    Google Scholar 

  2. Hagen, T.R., Hjelmervik, J.M., Lie, K.A., Natvig, J.R., Henriksen, M.O.: Visual simulation of shallow water waves. Simulation Modelling Practice and Theory 13(8), 716–726 (2005)

    Article  Google Scholar 

  3. Kass, M., Miller, G.: Rapid, Stable Fluid Dynamics for Computer Graphics. ACM SIGGRAPH Computer Graphics 24(4), 49–57 (1990)

    Article  Google Scholar 

  4. Layton, A.T., van de Panne, M.: A Numerically Efficient and Stable Algorithm for Animating Water Waves. The Visual Computer 18(1), 41–53 (2002)

    Article  MATH  Google Scholar 

  5. MacCormack, R.W.: The effect of viscosity in hypervelocity impact cratering. In: Caughey, D.A., Hafez, M.M. (eds.) Frontiers of Computational Fluid Dynamics 2002, pp. 27–43. World Scientific, Singapore (2002)

    Google Scholar 

  6. Tannehill, J.C., Anderson, D.A., Pletcher, R.H.: Computational Fluid Dynamics and Heat Transfer, 2nd edn. Taylor & Francis, Abington (1997)

    MATH  Google Scholar 

  7. Walendziuk, W., Jordan, A., Skorek, A.: Visualization of the Parallel Finite-Difference Time-Domain Method Computation Results. In: International Conference on Parallel Computing in Electrical Engineering (PARELEC), pp. 152–155 (2004)

    Google Scholar 

  8. Rost, R.J., Kessenich, J.M., Lichtenbelt, B.: OpenGL Shading Language. Addison-Wesley, Reading (2004)

    Google Scholar 

  9. Karsten, O.N., Trier, P.: Implementing Rapid, Stable Fluid Dynamics on the GPU (2004), http://projects.n-o-e.dk/GPUwatersimulation/gpu-water.pdf

  10. Kuo, Y.T., Shih, Z.C.: The Simulation of Tsunami Wave Propagation. In: IEEE International Symposium on Multimedia Workshops, pp. 3–8 (2007)

    Google Scholar 

  11. Chow, V.T.: Open Channel Hydraulics. McGraw-Hill, New York (1959)

    Google Scholar 

  12. Zhou, J.G.: Lattice Boltzmann Methods for Shallow Water Flows. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  13. Anderson, J.D.: Computational Fluid Dynamics: The Basics with Applications. McGrawHill, New York (1995)

    Google Scholar 

  14. Kowalik, Z., Murty, T.S.: Numerical Modeling of Ocean Dynamics. Advanced Series on Ocean Engineering, vol. 5. World Scientific, Singapore (1993)

    Google Scholar 

  15. Fernandes, A.R.: GLSL Tutorial, http://www.lighthouse3d.com/opengl/glsl/

  16. Ahn, S.H.: OpenGL Frame Buffer Object (FBO), http://www.songho.ca/opengl/gl_fbo.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liang, WY. et al. (2009). A GPU-Based Simulation of Tsunami Propagation and Inundation. In: Hua, A., Chang, SL. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2009. Lecture Notes in Computer Science, vol 5574. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03095-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03095-6_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03094-9

  • Online ISBN: 978-3-642-03095-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics