Advertisement

Sets of Infinite Words Recognized by Deterministic One-Turn Pushdown Automata

Conference paper
  • 196 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5489)

Abstract

In this paper we consider deterministic pushdown automata on infinite words with restricted use of the stack. More precisely, this study concerns: (1) Behavior of deterministic one-turn pushdown automata using Büchi and Muller modes of acceptance and (2) Closure properties of these sets by Boolean and limit operators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Büchi, J.R.: On a decision method in the restricted second-order arithmetic. In: Logic, methodology and philosophy of science. Proceedings of the 1960 International Congress, pp. 1–14. Stanford Univ. Press, CA (1962)Google Scholar
  2. 2.
    Cohen, R., Gold, A.: Theory of ω-languages, I, II. J. Comp. System Sci. 15, 169–208 (1977)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Cohen, R., Gold, A.: ω-computation on deterministic pushdown machines. J. Comp. System Sci. 16, 275–300 (1978)Google Scholar
  4. 4.
    Eilenberg, S.: Automata languages and machines, vol. A. Academic press, New York (1977)Google Scholar
  5. 5.
    Linna, M.: On ω-words and ω-computations, Ann. Univ. Turkuensis (1975)Google Scholar
  6. 6.
    Ginsburg, S., Spanier, E.: Finite-turn pushdown automata. SIAM J. Control (4), 429–453 (1966)Google Scholar
  7. 7.
    McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Information and Control 9, 521–530 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Mihoubi, D.: Characterization and closure properties of linear ω-languages. Theor. Comput. Sci. 191, 79–95 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Mihoubi, D.: Modes de reconnaissance et equités dans les ω-automates à pic, Thèse de Doctorat, Université Paris Nord (1989)Google Scholar
  10. 10.
    Muller, D.: Infinite sequences and finite machines. In: Ginsburg, S. (ed.) SWCT 1963, pp. 3–16. IEEE, Los Alamitos (1963)Google Scholar
  11. 11.
    Nivat, M.: Sur les ensembles de mots infinis engendrés par une grammaire algèbrique. Inform. Théorique et Appl. 12(3), 259–278 (1978)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Laboratoire des Mathématiques Pures et Appliquées, Département de MathématiqueUniversité de M’silaAlgeria

Personalised recommendations