Representations of Numbers as \(\sum_{k=-n}^n \varepsilon_k k\):A Saddle Point Approach

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5489)


Using the saddle point method, we obtain from the generating function of the numbers in the title and Cauchy’s integral formula asymptotic results of high precision in central and non-central regions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clark, L.: On the representation of m as \(\sum\sp n\sb {k=-n}\epsilon\sb kk\). Int. J. Math. Math. Sci. 23, 77–80 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Entringer, R.C.: Representation of m as \(\sum \sb{k=-n}\sp{n}\,\varepsilon \sb{k}k\). Canad. Math. Bull. 11, 289–293 (1968)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Feller, W.: Introduction to Probability Theory and its Applications, vol. I. Wiley, Chichester (1968)zbMATHGoogle Scholar
  4. 4.
    Flajolet, P., Sedgewick, B.: Analytic combinatorics. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  5. 5.
    Louchard, G., Prodinger, H.: The number of inversions in permutations: A saddle point approach. J. Integer Seq. 6, 03.2.8 (2003)Google Scholar
  6. 6.
    Odlyzko, A.: Graham, R., Götschel, M., Lovász, L. (eds.): Asymptotic Enumeration, pp. 1063–1229. Elsevier Science, Amsterdam (1995)Google Scholar
  7. 7.
    van Lint, J.H.: Representation of 0 as \(\sum \sp{N}\sb{k=-N}\,\varepsilon \sb{k}k\). Proc. Amer. Math. Soc. 18, 182–184 (1967)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Département d’InformatiqueUniversité Libre de BruxellesBruxellesBelgium
  2. 2.Mathematics DepartmentUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations