Advertisement

A Playful Glance at Hierarchical Questions for Two-Way Alternating Automata

Conference paper
  • 193 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5489)

Abstract

Two-way alternating automata were introduced by Vardi in order to study the satisfiability problem for the modal μ-calculus extended with backwards modalities. In this paper, we present a very simple proof by way of Wadge games of the strictness of the hierarchy of Motowski indices of two-way alternating automata over trees.

Keywords

Binary Tree Terminal Node Hierarchy Problem Winning Strategy Game Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberucci, L.: Strictness of the Modal μ-Calculus Hierarchy. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata, Logics, and Infinite Games. LNCS, vol. 2500, pp. 185–201. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Arnold, A.: The μ-Calculus Alternation-Depth Hierarchy is Strict on Binary Trees. Theor. Inform. Appl. 33(4/5), 319–340 (1999)CrossRefGoogle Scholar
  3. 3.
    Arnold, A., Niwinski, D.: Rudiments of μ-Calculus. Studies in Logic, vol. 146. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  4. 4.
    Arnold, A., Niwinski, D.: Continuous separation of game languages. Fundamenta Informaticae 81(1-3), 19–28 (2008)MathSciNetGoogle Scholar
  5. 5.
    Bradfield, J.: The Modal μ-Calculus Alternation Hierarchy is Strict. Theor. Comput. Sci. 195(1), 133–153 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bradfield, J.: Simplifying the Modal μ-Calculus Alternation Hierarchy. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 39–49. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Duparc, J., Facchini, A.: The Topological Complexity of Models of the Modal μ-Calculus – On The Alternation Free Fragment and Beyond (submitted)Google Scholar
  8. 8.
    Duparc, J., Murlak, F.: On the Topological Complexity of Weakly Recognizable Tree Languages. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 261–273. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Duparc, J.: Wadge Hierarchy and Veblen Hierarchy Part 1: Borel Sets of Finite Rank. J. Symb. Log. 66(1), 56–86 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Emerson, E.A., Jutla, C.S.: Tree Automata, μ-Calculus and Determinacy (Extended Abstract). In: Sipser, M. (ed.) Proc. FOCS 1991, pp. 368–377 (1991)Google Scholar
  11. 11.
    Grädel, E., Walukiewicz, I.: Guarded fixed point logics. In: Longo, G. (ed.) Proc. LICS 1999, pp. 45–54 (1999)Google Scholar
  12. 12.
    Henzinger, T.A., Kupferman, O., Qadeer, S.: From prehistoric to postmodern symbolic model checking. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 195–206. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Kupfermann, O., Safra, S., Vardi, M.: Relating Word and Tree Automata. In: Clarke, E.M. (ed.) Proc. LICS 1996, pp. 322–332 (1996)Google Scholar
  14. 14.
    Mostowski, A.W.: Hierarchies of weak automata and weak monadic formulas. Theor. Comput. Sci. 83, 323–335 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Murlak, F.: On deciding topological classes of deterministic tree languages. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 428–441. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Murlak, F.: The Wadge hierarchy of deterministic tree languages. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 408–419. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Murlak, F.: Weak Index vs. Borel Rank. In: Albers, S., Weil, P., Rochange, C. (eds.) Proc. STACS 2008, pp. 573–584 (2008)Google Scholar
  18. 18.
    Niwinski, D.: On fixed point clones. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226, pp. 464–473. Springer, Heidelberg (1986)Google Scholar
  19. 19.
    Niwinski, D., Walukiewicz, I.: Deciding Nondeterministic Hierarchy of Deterministic Tree Automata. Electr. Notes Theor. Comput. Sci. 123, 195–208 (2005)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Vardi, M.Y.: Reasoning about the Past with Two-Way Automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Wadge W.W.: Reducibility and determinateness on the Baire space. Ph.D. Thesis, Berkeley (1984)Google Scholar
  22. 22.
    Wagner, K.: Eine topologische Charakterisierung einiger Klassen regulärer Folgenmengen. Elektron. Informationsverarbeitung Kybern. 13, 473–487 (1977)zbMATHGoogle Scholar
  23. 23.
    Wagner, K.: On ω-regular sets. Inform. and Control 43, 123–177 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Wilke, T.: Alternating Tree Automata, Parity Games, and Modal μ-Calculus. Bul. Belg. Math. Soc. 8(2), 359–391 (2001)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Faculté des Hautes Études Commerciales, Institut des Systèmes d’informationUniversité de LausanneLausanneSwitzerland
  2. 2.Laboratoire Bordelais de Recherche en InformatiqueUniversité Bordeaux 1Talence cedexFrance

Personalised recommendations