Advertisement

Genetic Systems without Inhibition Rules

Conference paper
  • 193 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5489)

Abstract

Genetic Systems are a formalism inspired by genetic regulatory networks, suitable for modeling the interactions between genes and proteins, acting as regulatory products. The evolution is driven by genetic gates: a new object (representing a protein) is produced when all activator objects are available in the system, and no inhibitor object is present. Activators are not consumed by the application of such a rule. Objects disappear because of degradation: each object is equipped with a lifetime, and the object decays when such a lifetime expires.

It is known that such systems are Turing powerful, either when we consider interleaving semantics (a single action is executed in each computational step) as well as if we consider maximal parallel semantics (all the rules that can be applied at a computational step must be applied). In this paper we investigate the power of inhibiting rules.

Keywords

Genetic System Computational Step Program Counter Genetic Regulatory Network Applicable Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blossey, R., Cardelli, L., Phillips, A.: A Compositional Approach to the Stochastic Dynamics of Gene Networks. In: Priami, C., Cardelli, L., Emmott, S. (eds.) Transactions on Computational Systems Biology IV. LNCS (LNBI), vol. 3939, pp. 99–122. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Busi, N., Pinna, G.M.: A Causal Semantics for Contextual P/T nets. In: Proc. ICTCS 1995, pp. 311–325. World Scientific, Singapore (1995)Google Scholar
  3. 3.
    Busi, N.: On the computational power of the mate/Bud/Drip brane calculus: Interleaving vs. Maximal parallelism. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 144–158. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Busi, N., Zandron, C.: Computing with genetic gates, proteins, and membranes. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 250–265. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Busi, N., Zandron, C.: Computational expressiveness of Genetic Systems (submitted)Google Scholar
  6. 6.
    Busi, N., Zandron, C.: Computing with Genetic Gates. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 105–114. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Busi, N., Zandron, C.: On the Computational Power of Genetic Gates with Interleaving Semantics: The Power of Inhibition and Degradation. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 173–186. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Cardelli, L.: Brane Calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    De Jong, H.: Modeling and Simulation of Genetic Regulatory Systems: A Literature Review. Journal of Computatonal Biology 9, 67–103 (2002)CrossRefGoogle Scholar
  10. 10.
    Finkel, A., Schnoebelen, P.: Well-Structured Transition Systems Everywhere! Theoretical Computer Science 256, 63–92 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Freund, R.: Asynchronous P Systems and P Systems Working in the Sequential Mode. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 36–62. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  13. 13.
    Montanari, U., Rossi, F.: Contextual Nets. Acta Inform. 32(6), 545–596 (1995)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  15. 15.
    Reisig, W.: Petri nets: An Introduction. EATCS Monographs in Computer Science. Springer, Heidelberg (1985)zbMATHGoogle Scholar
  16. 16.
    Shepherdson, J.C., Sturgis, J.E.: Computability of Recursive Functions. Journal of the ACM 10, 217–255 (1963)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Dipartimento di Scienze dell’InformazioneUniversità di BolognaBolognaItaly
  2. 2.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità di Milano-BicoccaMilanoItaly

Personalised recommendations