From cloud condensation nuclei to cloud droplets: a turbulent model

  • A. Celani
  • A. Mazzino
  • M. TizziEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 132)


The formation of a warm vertical cloud is classically described by the evolution of microscopic droplets [1]. Droplets start to nucleate around solid particles in a favourable environment (i.e. for positive supersaturation in the absence of solute effect). Then, if the available vapour is sufficient, they grow by condensation. Once their size is large enough, their terminal velocity is no more negligible and they start to collide with both slower and faster droplets. The resulting growth by coalescence is explosive and eventually a precipitation can occur. This simple description is able to capture the basic mechanisms behind the first development of the cloud.

Nevertheless, the classical description leaves some problems open and also leads to a serious inconsistency. Indeed, the prediction for the condensational growth states that smaller droplets grow faster than larger droplets. As a result, during the condensation stage the droplet population becomes more and more homogeneous, while the growth slows down. On the one hand, this slowing process cannot lead to a precipitation in reasonable times; on the other hand, the explosive process ensured by collisions cannot occur, if all the droplets share the same size (i.e. the same terminal velocity). Therefore, the size distribution (known as size spectrum) during the condensation stage must broaden in some way. Such a contradiction with the classical prediction is confirmed by experimental observations in clouds, where a broader size spectrum is detected [2, 3].


Terminal Velocity Cloud Droplet Size Spectrum Cloud Condensation Nucleus Droplet Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation, Kluwer Academic Publishers, Boston MA 1996.Google Scholar
  2. 2.
    I. J. Lee and H. R. Pruppacher, Pure Appl. Geophys., 115, 523 (1977).CrossRefADSGoogle Scholar
  3. 3.
    J. L. Brenguier and L. Chaumat, J. Atmos. Sci., 58, 628 (2001).CrossRefADSGoogle Scholar
  4. 4.
    J. W. Telford, Atmos. Res., 40, 261 (1996).CrossRefGoogle Scholar
  5. 5.
    D. B. Johnson, J. Atmos. Sci., 39, 448 (1982).CrossRefADSGoogle Scholar
  6. 6.
    A. M. Blyth, S. G. Lasher-Trapp, W. A. Cooper, C. A. Knight and J. Latham, J. Atmos. Sc., 60, 21 (2001).Google Scholar
  7. 7.
    Y. Segal, A. Khain, M. B. Pinsky and D. Rosenfeld, Atmos. Res., 71, 3 (2004).CrossRefGoogle Scholar
  8. 8.
    G. Falkovich, A. Fouxon and G. Stepanov, Nature, 419, 151 (2002).CrossRefADSGoogle Scholar
  9. 9.
    S. Ghosh, J. Davila, J. C. R. Hunt, A. Srdic, H. J. S. Fernando and P. R. Jonas, Proc. Royal Soc., 461, 3059 (2005).zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    S. Sundaram and L. R. Collins, J. Fluid Mech., 335, 75 (1997).zbMATHCrossRefADSGoogle Scholar
  11. 11.
    K. Lehmann, H. Siebert, M. Wendish and R. A. Shaw, Tellus B, 59, 1 (2007).CrossRefADSGoogle Scholar
  12. 12.
    P. A. Vaillancourt, M. K. Yau and W. W. Grabowski, J. Atmos. Sci., 58, 1945 (2001).CrossRefADSGoogle Scholar
  13. 13.
    P. A. Vaillancourt, M. K. Yau, P. Bartello and W. W. Grabowski, J. Atmos. Sci., 59, 3421 (2002).CrossRefADSGoogle Scholar
  14. 14.
    A. Celani, G. Falkovich, A. Mazzino and A. Seminara, Europhys. Lett., 70 6, 775 (2005).Google Scholar
  15. 15.
    A. Celani, A. Mazzino, A. Seminara and M. Tizzi, J. Turbul., 8, 17 (2007).ADSGoogle Scholar
  16. 16.
    A. Celani, A. Mazzino and M. Tizzi, N. J. Phys., 10, 075021 (2008).CrossRefGoogle Scholar
  17. 17.
    A. S. Lanotte, A. Seminara and F. Toschi, J. Atmos. Sci., preprint.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Centre National de la Recherche ScientifiqueParisFrance
  2. 2.Dipartimento di Fisica and Istituto Nazionale di Fisica NucleareUniversità di GenovaGenoaItaly

Personalised recommendations