Advertisement

Large-scale transitional dynamics in pipe flow

  • F. MellibovskyEmail author
  • A. Meseguer
  • T. M. Schneider
  • B. Eckhardt
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 132)

Summary

Direct numerical simulation of transitional pipe flow is carried out in a long computational domain in order to characterize the dynamics within the saddle region of phase space that separates laminar flow from turbulent intermittency. A shoot & bisection method is used to compute critical trajectories. The chaotic saddle or edge state approached by these trajectories is studied in detail. For Re ≤ 2000 the edge state and the corresponding intermittent puff are shown to share similar averaged global properties. For Re ≥ 2200, the puff length grows unboundedly whereas the edge state varies but mildly with Re. In this regime, transition is shown to proceed in two steps: first the energy grows to produce a localized turbulent patch, which then, during the second stage, spreads out to fill the whole pipe.

Keywords

Direct Numerical Simulation Edge State Pipe Flow Bisection Method Turbulent Spot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Meseguer and L. N. Trefethen, J. Comput. Phys. 186, 178 (2003).zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    O. Reynolds, Phil. Trans. Roy. Soc. Lond. A 174, 935 (1883).CrossRefGoogle Scholar
  3. 3.
    B. Hof, A. Juel, and T. Mullin, Phys. Rev. Lett. 91(24), 244502 (2003).CrossRefADSGoogle Scholar
  4. 4.
    I. J. Wygnanski and F. H. Champagne, J. Fluid Mech. 59, 281 (1973).CrossRefADSGoogle Scholar
  5. 5.
    R. Kerswell, Nonlinearity 18, R17 (2005).zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    B. Eckhardt, T. Schneider, B. Hof, and J. Westerweel, Ann. Rev. Fluid Mech. 39, 447 (2007).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    H. Faisst and B. Eckhardt, Phys. Rev. Lett. 91, 224502 (2003).CrossRefADSGoogle Scholar
  8. 8.
    C. Pringle and R. R. Kerswell, Phys. Rev. Lett. 99, 074502 (2007).CrossRefADSGoogle Scholar
  9. 9.
    F. Mellibovsky and A. Meseguer, Phil. Trans. Roy. Soc. Lond. A 367, 545 (2009).zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    A. Meseguer and F. Mellibovsky, Appl. Num. Math. 57, 920 (2007).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    D. Skufca, J. A. Yorke, and B. Eckhardt, Phys. Rev. Lett. 96, 174101 (2006).CrossRefADSGoogle Scholar
  12. 12.
    T. M. Schneider, B. Eckhardt, and J. A. Yorke, Physical Review Letters 99, 034502 (2007).CrossRefADSGoogle Scholar
  13. 13.
    A. Prigent, G. Gregoire, H. Chate, O. Dauchot, and W. van Saarloos, Phys. Rev. Lett. 89, 014501 (2002).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • F. Mellibovsky
    • 1
    Email author
  • A. Meseguer
    • 1
  • T. M. Schneider
    • 2
    • 3
  • B. Eckhardt
    • 2
  1. 1.Departament de Física AplicadaUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Fachbereich Physik, Phillipps-Universität MarburgMarburgGermany
  3. 3.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations