Forced localized turbulence in pipe flows

  • M. AvilaEmail author
  • B. Hof
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 132)


Low Reynolds number turbulence is manifested in shear flows in the form of disordered patches of fluid motion embedded in laminar flow. Here, we investigate the mean properties of these patches in pipe flow and present a new method to influence their physical mechanisms.


Pipe Flow Critical Reynolds Number Azimuthal Direction Volume Force Centerline Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Coles, J. Fluid Mech., 21, 385–425 (1965).zbMATHCrossRefADSGoogle Scholar
  2. 2.
    A. Prigent, and G. Gr´egoire, and H. Chat´e, and O. Dauchot, and W. van Saarloos, Phys. Rev. Lett., 89, 014501 (2002).Google Scholar
  3. 3.
    I. J. Wygnanski, and F. H. Champagne, 59, 281-335 (1973).Google Scholar
  4. 4.
    A. de Lozar, and B. Hof, Phyl. Trans. R. Soc. London A, 367 (2008).Google Scholar
  5. 5.
    J. Peixinho, and T. Mullin, Phys. Rev. Lett., 96, 094501 (2006).CrossRefADSGoogle Scholar
  6. 6.
    A. P. Willis, and R. R. Kerswell, Phys. Rev. Lett., 98, 014501 (2007).CrossRefADSGoogle Scholar
  7. 7.
    T. M. Schneider, and B. Eckhardt, Phys. Rev. E, 78, 046310 (2008).CrossRefADSGoogle Scholar
  8. 8.
    B. Hof, A. de Lozar, D. J. Kuik, and J. Westerweel, Phys. Rev. Lett., 101, 214501 (2008).CrossRefADSGoogle Scholar
  9. 9.
    A. Meseguer, and F. Mellibovsky, Appl. Num. Math., 57, 920–938 (2007).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany

Personalised recommendations