Advertisement

3-D Particle Tracking Velocimetry (PTV) in gas flows using coloured tracer particles

  • Dominique TarletEmail author
  • Christian Bendicks
  • Robert Bordás
  • Bernd Wunderlich
  • Dominique Thévenin
  • Bernd Michaelis
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 132)

Abstract

Although relatively often used for liquid flows, Particle Tracking Velocimetry (PTV) is still considered as a major challenge in gaseous flows. One of the main objections is the higher tracer density necessary for gaseous measurements [1, 2], resulting from higher characteristic speeds and smaller spaceand time-scales of the important flow structures. Nevertheless, the widely recognized interest of Lagrange-based measurements (such as PTV) for the investigation of turbulence and vortical structures in real flows [3] is a sufficient reason to face all these challenges. The solution proposed in this work is to employ coloured particles and use the associated separation into different colour classes. Considering separately each resulting colour class, the apparent particle density is decreased without restrictions in the measurement accuracy.

Keywords

Tracer Particle Vortical Structure Particle Track Velocimetry Epipolar Geometry Camera Reference Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.G. Maas, International Archives on Photogrammetry and Remote Sensing, XXIX, 102–107 (1992).Google Scholar
  2. 2.
    T. Netzsch and B. Jähne, Ein schnelles Verfahren zur Lösung des Stereokorrespondenz-Problems bei der 3D-Particle Tracking Velocimetry, Eds. J. Pöppl and H. Handels, Springer Verlag (1993).Google Scholar
  3. 3.
    N.T. Ouelette, H. Xu and E. Bodenschatz, Experiments in Fluids, 40, 301–303 (2006).CrossRefADSGoogle Scholar
  4. 4.
    C.T. Crowe, Multiphase flow handbook, Eds. Taylor & Francis (2006).Google Scholar
  5. 5.
    R. Kuhn, R. Bordás, B. Wunderlich, B. Michaelis and D. Thévenin, 10th International Conference on Engineering Applications of Neural Networks, Thessaloniki, Greece, 387–394 (2007).Google Scholar
  6. 6.
    T. Luhmann, Nahbereichsphotogrammetrie, Wichmann-Verlag, Heidelberg (2000).Google Scholar
  7. 7.
    D. Papantoniou and T. Dracos, Advances in turbulence, Ed. Hernholz and Fiedler, Springer Verlag 2 (1989).Google Scholar
  8. 8.
    N. Kasagi and Y. Sata, Sixth International Symposium on Flow Visualization, 832–837 (1992).Google Scholar
  9. 9.
    J.C. Crocker, D.G. Grier, Journal of Colloid and Interface Science 179, 298 (1996).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dominique Tarlet
    • 1
    Email author
  • Christian Bendicks
    • 2
  • Robert Bordás
    • 1
  • Bernd Wunderlich
    • 1
  • Dominique Thévenin
    • 1
  • Bernd Michaelis
    • 2
  1. 1.Inst. für Strömungstechnik und Thermodynamik (ISUT)MagdeburgGermany
  2. 2.Inst. für Elektronik, Signalverarbeitung und Kommunikationstechnik (IESK) Otto-von-Guericke-UniversitätMagdeburgGermany

Personalised recommendations