Relationship between Kanamori-McAloon Principle and Paris-Harrington Theorem

  • Gyesik Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5635)


We give a combinatorial proof of a tight relationship between the Kanamori-McAloon principle and the Paris-Harrington theorem with a number-theoretic parameter function. We show that the provability of the parametrised version of the Kanamori-McAloon principle can exactly correspond to the relationship between Peano Arithmetic and the ordinal ε 0 which stands for the proof-theoretic strength of Peano Arithmetic. Because A. Weiermann already noticed the same behaviour of the parametrised version of Paris-Harrington theorem, this indicates that both propositions behave in the same way with respect to the provability in Peano Arithmetic.


Kanamori-McAloon principle Paris-Harrington theorem Peano Arithmetic independence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. 30(2), 264–286 (1929)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Paris, J., Harrington, L.: A mathematical incompleteness in peano arithmetic. In: Barwise, J. (ed.) Handbook of Mathematical Logic. Studies in Logic and the Foundations of Mathematics, vol. 90, pp. 1133–1142. North-Holland, Amsterdam (1977)CrossRefGoogle Scholar
  3. 3.
    Erdös, P., Rado, R.: Combinatorial theorems on classifications of subsets of a given set. Proc. London Math. Soc. 2(3), 417–439 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kanamori, A., McAloon, K.: On Gödel incompleteness and finite combinatorics. Ann. Pure Appl. Logic 33(1), 23–41 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    McAloon, K.: Progressions transfinies de théories axiomatiques, formes combinatoires du théorème d’incomplétude et fonctions récursives a croissance rapide. In: McAloon, K. (ed.) Modèles de l’Arithmetique, France, Paris. Asterique, vol. 73, pp. 41–58. Société Mathématique de France, Paris (1980)Google Scholar
  6. 6.
    Weiermann, A.: A classification of rapidly growing Ramsey functions. Proc. Am. Math. Soc. 132(2), 553–561 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Schwichtenberg, H.: Eine Klassifikation der ε 0-rekursiven Funktionen. Z. Math. Logik Grundlagen Math. 17, 61–74 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Buchholz, W., Wainer, S.: Provably computable functions and the fast growing hierarchy. In: Simpson, S. (ed.) Logic and Combinatorics. The AMS-IMS-SIAM joint summer conference in 1985. Contemporary Mathematics Series, pp. 179–198. Amer. Math. Soc., Providence (1987)Google Scholar
  9. 9.
    Fairtlough, M., Wainer, S.S.: Hierarchies of provably recursive functions. In: Handbook of proof theory. Stud. Logic Found. Math., vol. 137, pp. 149–207. North-Holland, Amsterdam (1998)CrossRefGoogle Scholar
  10. 10.
    Loebl, M., Nešetřil, J.: An unprovable Ramsey-type theorem. Proc. Amer. Math. Soc. 116(3), 819–824 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Arai, T.: On the slowly well orderedness of ε 0. Math. Log. Q. 48(1), 125–130 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Carlucci, L., Lee, G., Weiermann, A.: Classifying the phase transition threshold for regressive ramsey functions (preprint)Google Scholar
  13. 13.
    Weiermann, A.: Analytic combinatorics, proof-theoretic ordinals, and phase transitions for independence results. Ann. Pure Appl. Logic 136(1-2), 189–218 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kojman, M., Lee, G., Omri, E., Weiermann, A.: Sharp thresholds for the phase transition between primitive recursive and ackermannian ramsey numbers. J. Comb. Theory, Ser. A 115(6), 1036–1055 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bovykin, A.: Several proofs of PA-unprovability. In: Logic and its applications. Contemp. Math., vol. 380, pp. 29–43. Amer. Math. Soc., Providence (2005)CrossRefGoogle Scholar
  16. 16.
    Lee, G.: Phase Transitions in Axiomatic Thought. PhD thesis, University of Münster, Germany (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gyesik Lee
    • 1
  1. 1.ROSAEC centerSeoul National UniversitySeoulKorea

Personalised recommendations