Skip to main content

Skolem + Tetration Is Well-Ordered

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 5635)

Abstract

The problem of whether a certain set of number-theoretic functions – defined via tetration (i.e. iterated exponentiation) – is well-ordered by the majorisation relation, was posed by Skolem in 1956. We prove here that indeed it is a computable well-order, and give a lower bound τ 0 on its ordinal.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-03073-4_2
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-03073-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ehrenfeucht, A.: Polynomial functions with Exponentiation are well ordered. Algebra Universialis 3, 261–262 (1973)

    MathSciNet  CrossRef  MATH  Google Scholar 

  2. Kruskal, J.: Well-quasi-orderings, the tree theorem, and Vazsonyi’s conjecture. Trans. Amer. Math. Soc. 95, 261–262 (1960)

    MathSciNet  MATH  Google Scholar 

  3. Levitz, H.: An ordered set of arithmetic functions representing the least ε-number. Z. Math. Logik Grundlag. Math. 21, 115–120 (1975)

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. Levitz, H.: An initial segment of the set of polynomial functions with exponentiation. Algebra Universialis 7, 133–136 (1977)

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. Levitz, H.: An ordinal bound for the set of polynomial functions with exponentiation. Algebra Universialis 8, 233–243 (1978)

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Richardson, D.: Solution to the identity problem for integral exponential functions. Z. Math. Logik Grundlag. Math. 15, 333–340 (1978)

    MathSciNet  CrossRef  MATH  Google Scholar 

  7. Sierpiński, W.: Cardinal and Ordinal Numbers. PWN-Polish Scientific Publishers, Warszawa (1965)

    MATH  Google Scholar 

  8. Skolem, T.: An ordered set of arithmetic functions representing the least ε-number. Det Kongelige Norske Videnskabers selskabs Forhandlinger 29(12), 54–59 (1956)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barra, M., Gerhardy, P. (2009). Skolem + Tetration Is Well-Ordered. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds) Mathematical Theory and Computational Practice. CiE 2009. Lecture Notes in Computer Science, vol 5635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03073-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03073-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03072-7

  • Online ISBN: 978-3-642-03073-4

  • eBook Packages: Computer ScienceComputer Science (R0)