Skip to main content

Dissimilarity Based Vector Space Embedding of Graphs Using Prototype Reduction Schemes

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5632))

Abstract

Graphs provide us with a powerful and flexible representation formalism for object classification. The vast majority of classification algorithms, however, rely on vectorial data descriptions and cannot directly be applied to graphs. In the present paper a dissimilarity representation for graphs is used in order to explicitly transform graphs into n-dimensional vectors. This embedding aims at bridging the gap between the high representational power of graphs and the large amount of classification algorithms available for feature vectors. The basic idea is to regard the dissimilarities to n predefined prototype graphs as features. In contrast to previous works, the prototypes and in particular their number are defined by prototype reduction schemes originally developed for nearest neighbor classifiers. These reduction schemes enable us to omit the cumbersome validation of the embedding space dimensionality. With several experimental results we prove the robustness and flexibility of our new method and show the advantages of graph embedding based on prototypes gained by these reduction strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perner, P. (ed.): MLDM 2007. LNCS (LNAI), vol. 4571. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  2. Perner, P. (ed.): ICDM 2006. LNCS (LNAI), vol. 4065. Springer, Heidelberg (2006)

    Google Scholar 

  3. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley-Interscience, Hoboken (2000)

    MATH  Google Scholar 

  4. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  5. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)

    Article  Google Scholar 

  6. Cook, D., Holder, L. (eds.): Mining Graph Data. Wiley-Interscience, Hoboken (2007)

    MATH  Google Scholar 

  7. Gärtner, T.: Kernels for Structured Data. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  8. Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and Kernel Machines. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  9. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1, 245–253 (1983)

    Article  MATH  Google Scholar 

  10. Luo, B., Wilson, R., Hancock, E.: Spectral embedding of graphs. Pattern Recognition 36(10), 2213–2223 (2003)

    Article  MATH  Google Scholar 

  11. Wilson, R., Hancock, E., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Trans. on Pattern Analysis ans Machine Intelligence 27(7), 1112–1124 (2005)

    Article  Google Scholar 

  12. Robles-Kelly, A., Hancock, E.: A Riemannian approach to graph embedding. Pattern Recognition 40, 1024–1056 (2007)

    Article  MATH  Google Scholar 

  13. Pekalska, E., Duin, R.: The Dissimilarity Representation for Pattern Recognition: Foundations and Applications. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  14. Spillmann, B., Neuhaus, M., Bunke, H., Pekalska, E., Duin, R.: Transforming strings to vector spaces using prototype selection. In: Yeung, D.Y., Kwok, J., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 287–296. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Riesen, K., Neuhaus, M., Bunke, H.: Graph embedding in vector spaces by means of prototype selection. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 383–393. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Bezdek, J., Kuncheva, L.: Nearest prototype classifier designs: An experimental study. Int. Journal of Intelligent Systems 16(12), 1445–1473 (2001)

    Article  MATH  Google Scholar 

  17. Kim, S., Oommen, B.: On using prototype reduction schemes to optimize dissimilarity-based classification. Pattern Recognition 40, 2946–2957 (2006)

    Article  MATH  Google Scholar 

  18. Kim, S., Oommen, B.: A brief taxonomy and ranking of creative prototype reduction schemes. Pattern Analysis and Applications 6, 232–244 (2003)

    Article  MathSciNet  Google Scholar 

  19. Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the computation of graph edit distance. In: Yeung, D.Y., Kwok, J., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 163–172. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image and Vision Computing (2008) (accepted for publication)

    Google Scholar 

  21. Vapnik, V.: Statistical Learning Theory. John Wiley, Chichester (1998)

    MATH  Google Scholar 

  22. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  23. Kohavi, R., John, G.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)

    Article  MATH  Google Scholar 

  24. Hart, P.: The condensed nearest neighbor rule. IEEE Trans. on Information Theory 14(3), 515–516 (1968)

    Article  Google Scholar 

  25. Susheela Devi, V., Murty, M.: An incremental prototype set building technique. Pattern Recognition 35(2), 505–513 (2002)

    Article  MATH  Google Scholar 

  26. Devijver, P.A., Kittler, J.: On the edited nearest neighbor rule. In: Proc. 5th Int. Conf. on Pattern Recognition, pp. 72–80 (1980)

    Google Scholar 

  27. Gates, G.W.: The reduced nearest neighbor rule. IEEE Transactions on Information Theory 18, 431–433 (1972)

    Article  Google Scholar 

  28. Chang, C.L.: Finding prototypes for nearest neighbor classifiers. IEEE Trans. on Computers 23(11), 1179–1184 (1974)

    Article  MATH  Google Scholar 

  29. Ritter, G., Woodruff, H., Lowry, S., Isenhour, T.: An algorithm for a selective nearest neighbor decision rule. IEEE Trans. on Information Theory 21(6), 665–669 (1975)

    Article  MATH  Google Scholar 

  30. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008) (accepted for publication)

    Chapter  Google Scholar 

  31. DTP, D.T.P.: AIDS antiviral screen (2004), http://dtp.nci.nih.gov/docs/aids/aids_data.html

  32. Watson, C., Wilson, C.: NIST Special Database 4, Fingerprint Database. National Institute of Standards and Technology (1992)

    Google Scholar 

  33. Schenker, A., Bunke, H., Last, M., Kandel, A.: Graph-Theoretic Techniques for Web Content Mining. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Riesen, K., Bunke, H. (2009). Dissimilarity Based Vector Space Embedding of Graphs Using Prototype Reduction Schemes. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2009. Lecture Notes in Computer Science(), vol 5632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03070-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03070-3_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03069-7

  • Online ISBN: 978-3-642-03070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics