Skip to main content

Spectrum Steganalysis of WAV Audio Streams

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5632))

Abstract

In this paper, we propose an audio steganalysis method called reference based Fourier Spectrum Steganalysis. The mean values and the standard deviations of the high frequency spectrum of the second and high order derivatives are extracted from the testing signals and the reference versions. A Support Vector Machine (SVM) is employed to discriminate the unadulterated carrier signals and the steganograms wherein covert messages were embedded. Experimental results show that our method delivers very good performance and holds great promise for effective detection of steganograms produced by Hide4PGP, Invisible Secrets, S-tools4 and Steghide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Harmsen, J., Pearlman, W.: Steganalysis of Additive Noise Modelable Information Hiding. In: Proc. of SPIE Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents, vol. 5020, pp. 131–142 (2003)

    Google Scholar 

  2. Lyu, S., Farid, H.: How Realistic is Photorealistic. IEEE Trans. on Signal Processing 53(2), 845–850 (2005)

    Article  MathSciNet  Google Scholar 

  3. Shi, Y., Chen, C., Chen, W.: A Markov process based approach to effective attacking JPEG steganography. LNCS, vol. 437, pp. 249–264. Springer, Heidelberg (2007)

    Google Scholar 

  4. Liu, Q., Sung, A., Ribeiro, B., Ferreira, R.: Steganalysis of Multi-class JPEG Images Based on Expanded Markov Features and Polynomial Fitting. In: Proc. of 21st International Joint Conference on Neural Networks, pp. 3351–3356 (2008)

    Google Scholar 

  5. Liu, Q., Sung, A.: Feature Mining and Nuero-Fuzzy Inference System for Steganalysis of LSB Matching Steganography in Grayscale Images. In: Proc. of 20th International Joint Conference on Artificial Intelligence, pp. 2808–2813 (2007)

    Google Scholar 

  6. Liu, Q., Sung, A., Xu, J., Ribeiro, B.: Image Complexity and Feature Extraction for Steganalysis of LSB Matching Steganography. In: Proc. of 18th International Conference on Pattern Recognition, ICPR, vol. (1), pp. 1208–1211 (2006)

    Google Scholar 

  7. Liu, Q., Sung, A., Chen, Z., Xu, J.: Feature Mining and Pattern Classification for Steganalysis of LSB Matching Steganography in Grayscale Images. Pattern Recognition 41(1), 56–66 (2008)

    Article  MATH  Google Scholar 

  8. Liu, Q., Sung, A., Ribeiro, B., Wei, M., Chen, Z., Xu, J.: Image Complexity and Feature Mining for Steganalysis of Least Significant Bit Matching Steganography. Information Sciences 178(1), 21–36 (2008)

    Article  Google Scholar 

  9. Fridrich, J.: Feature-Based Steganalysis for JPEG Images and its Implications for Future Design of Steganographic Schemes. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 67–81. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Pevny, T., Fridrich, J.: Merging Markov and DCT Features for Multi-Class JPEG Steganalysis. In: Proc. SPIE Electronic Imaging, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505 (2007)

    Google Scholar 

  11. Ru, X., Zhang, H., Huang, X.: Steganalysis of Audio: Attaching the Steghide. In: Proc. of the Fourth International Conference on Machine Learning and Cybernetics, pp. 3937–3942 (2005)

    Google Scholar 

  12. Ru, X., Zhang, Y., Wu, F.: Audio Steganalysis Based on “Negative Resonance Phenomenon” Caused by Steganographic Tools. Journal of Zhejiang University Science A 7(4), 577–583 (2006)

    Article  MATH  Google Scholar 

  13. Avcibas, I.: Audio Steganalysis with Content-independent Distortion Measures. IEEE Signal Processing Letters 13(2), 92–95 (2006)

    Article  Google Scholar 

  14. Ozer, H., Sankur, B., Memon, N., Avcibas, I.: Detection of Audio Covert Channels Using Statstical Footprints of Hidden Messages. Digital Signal Processing 16(4), 389–401 (2006)

    Article  Google Scholar 

  15. Johnson, M., Lyu, S., Farid, H.: Steganalysis of Recorded Speech. In: Proc. SPIE, vol. 5681, pp. 664–672 (2005)

    Google Scholar 

  16. Kraetzer, C., Dittmann, J.: Pros and Cons of Mel-cepstrum Based Audio Steganalysis Using SVM Classification. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 359–377. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Kraetzer, C., Dittmann, J.: Mel-cepstrum based steganalysis for voip-steganography. In: Proc. SPIE, San Jose, CA, USA, vol. 6505 (2007)

    Google Scholar 

  18. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall, Englewood Cliffs (2008)

    Google Scholar 

  19. Hill, T., Lewicki, P.: Statistics: Methods and Applications. StatSoft, Inc. (2005) ISBN: 1884233597

    Google Scholar 

  20. Hide4PGP, http://www.heinz-repp.onlinehome.de/Hide4PGP.htm

  21. Invisiblesecrets, http://www.invisiblesecrets.com/

  22. S-tools4, http://digitalforensics.champlain.edu/download/s-tools4.zip

  23. Steghide, http://steghide.sourceforge.net/

  24. Vapnik, V.: Statistical Learning Theory. John Wiley, Chichester (1998)

    MATH  Google Scholar 

  25. Oppenheim, A., Schafer, R., Buck, J.: Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  26. http://mathworld.wolfram.com/FourierTransformGaussian.html

  27. Liu, Q., Sung, A., Qiao, M.: Detecting Information-Hiding in WAV Audio signals. In: Proc. of 19th International Conference on Pattern Recognition, Tampa, FL, USA (2008)

    Google Scholar 

  28. Zeng, W., Ai, H., Hu, R.: A Novel Steganalysis Algorithm of Phase coding in Audio Signal. In: Proc. the Sixth International Conference on Advanced Language Processing and Web Information Technology (ALPIT), pp. 261–264 (2007)

    Google Scholar 

  29. Zeng, W., Ai, H., Hu, R.: An Algorithm of Echo Steganalysis based on Power Cepstrum and Pattern Classification. In: Proc. International Conference on Information and Automation (ICIA), pp. 1667–1670 (2008)

    Google Scholar 

  30. Zhang, F., Pan, Z., Cao, K., Zheng, F., Wu, F.: The upper and lower bounds of the information-hiding capacity of digital images. Information Sciences 178(14), 2950–2959 (2008)

    Article  MathSciNet  Google Scholar 

  31. Chang, C., Lin, C., Tseng, C., Tai, W.: Reversible hiding in DCT-based compressed images. Information Sciences 177(13), 2768–2786 (2007)

    Article  Google Scholar 

  32. Chang, C., Lin, C.: Reversible steganographic method using SMVQ approach based on declustering. Information Sciences 177(8), 1796–1805 (2007)

    Article  Google Scholar 

  33. Lin, C., Chen, S., Hsueh, N.: Adaptive embedding techniques for VQ-compressed images. Information Sciences, doi:10.1016/j.ins.2008.09.001

    Google Scholar 

  34. Liu, C., Liao, S.: High-performance JPEG steganography using complementary embedding strategy. Pattern Recognition 41(9), 2945–2955 (2008)

    Article  MATH  Google Scholar 

  35. Qiao, M., Sung, A., Liu, Q.: Steganalysis of MP3Stego. In: Proc. of 22nd International Joint Conference on Neural Networks, Atlanta, GA, USA (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Q., Sung, A.H., Qiao, M. (2009). Spectrum Steganalysis of WAV Audio Streams. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2009. Lecture Notes in Computer Science(), vol 5632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03070-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03070-3_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03069-7

  • Online ISBN: 978-3-642-03070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics