Integrating Data Mining and Agent Based Modeling and Simulation

  • Omar Baqueiro
  • Yanbo J. Wang
  • Peter McBurney
  • Frans Coenen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5633)


In this paper, we introduce an integration study which combines Data Mining (DM) and Agent Based Modeling and Simulation (ABMS). This study, as a new paradigm for DM/ABMS, is concerned with two approaches: (i) applying DM techniques in ABMS investigation, and inversely (ii) utilizing ABMS results in DM research. Detailed description of each approach is presented in this paper. A conclusion and the future work of this (integration) study are given at the end.


Agents Agent Based Modeling and Simulation Data Mining KDD (Knowledge Discovery in Databases) Process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, USA, pp. 207–216. ACM Press, New York (1993)CrossRefGoogle Scholar
  2. 2.
    Ahmed, S.: Strategies for Partitioning Data in Association Rule Mining. Ph.D. Thesis, University of Liverpool, Liverpool, UK (2004)Google Scholar
  3. 3.
    Albashiri, K.A., Coenen, F., Leng, P.: Agent Based Frequent Set Meta Mining: Introducing EMADS. In: Artificial Intelligence in Theory and Practice II – Proceedings of IFIP 20th World Computer Congress, TC 12: IFIP AI 2008 Stream, Milano, Italy, pp. 23–32. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Anand, S.S., Bell, D.A., Hughes, J.G.: Evidence based Discovery of Knowledge in Databases. IEE Colloquium on Knowledge Discovery in Databases, Digest No: 1995/021(A), 9/1–9/5, London, UK (1995)Google Scholar
  5. 5.
    Balci, O.: Verification Validation and Accreditation of Simulation Models. In: Proceedings of the 29th Conference on Winter Simulation, Atlanta, GA, USA, pp. 135–141. ACM Press, New York (1997)CrossRefGoogle Scholar
  6. 6.
    Bankes, S.: Agent-based Modeling: A Revolution? In: Proceedings of the National Academy of Sciences, pp. 7199–7200 (1999)Google Scholar
  7. 7.
    Banks, J.: Handbook of Simulation. John Wiley & Sons, Chichester (1998)CrossRefGoogle Scholar
  8. 8.
    Beam, C., Segev, A.: Automated Negotiations: A Survey of the State of the Art. Wirtschaftsinformatik 39(3), 263–268 (1997)Google Scholar
  9. 9.
    Berry, M.J.A., Linoff, G.: Data Mining Techniques for Marketing, Sales, and Customer Support. John Wiley & Sons, Inc., USA (1997)Google Scholar
  10. 10.
    Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases. Department of Information and Computer Science, University of California, Irvine, CA, USA (1998),
  11. 11.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A Training Algorithm for Optimal Margin Classifiers. In: Proceedings of the 5th ACM Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, pp. 144–152. ACM Press, New York (1992)Google Scholar
  12. 12.
    Brachman, R.J., Anand, T.: The Process of Knowledge Discovery in Databases: A Human Centered Approach. In: Advance in Knowledge Discovery and Data Mining, pp. 37–57. AAAI/MIT Press (1996)Google Scholar
  13. 13.
    Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic Models for Resource Management and Scheduling in Grid Computing. Concurrency Computation Practice and Experience 14(14), 1507–1542 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Castella, J., Trung, T., Boissau, S.: Participatory Simulation of Land-use Changes in the Northern Mountains of Vietnam: The Combined Use of an Agent-based Model, a Role-playing Game, and a Geographic Information System. Ecology and Society 10(1), 27 (2005)CrossRefGoogle Scholar
  15. 15.
    Coenen, F.: The LUCK-KDD Discrietised/Normalised ARM and CARM Data Library. Department of Computer Science, University of Liverpool, Liverpool, UK (2003),
  16. 16.
    De Veaux, R.D., Hand, D.J.: How to Lie with Bad Data? Statistical Science 20(3), 231–238 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Domingos, P., Pazzani, M.: On the Optimality of the Simple Bayesian Classifier under Zero-one Loss. Machine Learning 29(2/3), 103–130 (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Dong, G., Li, J.: Efficient Mining of Emerging Patterns: Discovering Trends and Differences. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diago, CA, USA, pp. 43–52. ACM Press, New York (1999)CrossRefGoogle Scholar
  19. 19.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: Knowledge Discovery and Data Mining: Towards a Unifying Framework. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, pp. 82–95. AAAI Press, Menlo Park (1996)Google Scholar
  20. 20.
    Glass, R.L.: Practical Programmer: Inspections, Some Surprising Findings. Commun. ACM 42(4), 17–19 (1999)CrossRefGoogle Scholar
  21. 21.
    Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S.K., Huse, G., Huth, A., Jepsen, J.U., Jorgensen, C., Mooij, W.M., Muller, B., Pe’er, G., Piou, C., Railsback, S.F., Robbins, A.M., Robbins, M.M., Rossmanith, E., Ruger, N., Strand, E., Souissi, S., Stillman, R.A., Vabo, R., Visser, U., Deangelis, D.L.: A Standard Protocol for Describing Individual-based and Agent-based Models. Ecological Modelling 198(1-2), 115–126 (2006)CrossRefGoogle Scholar
  22. 22.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2006)zbMATHGoogle Scholar
  23. 23.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco (2001)zbMATHGoogle Scholar
  24. 24.
    James, M.: Classification Algorithms. Wiley Interscience, New York (1985)zbMATHGoogle Scholar
  25. 25.
    Klein, B.D.: Data Quality in the Practice of Consumer Product Management: Evidence from the Field. Data Quality Journal 4(1) (1998)Google Scholar
  26. 26.
    Kovalerchun, B., Vityaev, E.: Data Mining in Finance: Advances in Relational and Hybrid Methods. Kluwer Academic Publishers, Dordrecht (2000)zbMATHGoogle Scholar
  27. 27.
    Lang, K.: NewsWeeder: Learning to Filter Netnews. In: Machine Learning – Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, CA, USA, pp. 331–339. Morgan Kaufmann Publishers, San Francisco (1995)Google Scholar
  28. 28.
    Lisec, A., Ferlan, M., Lobnik, F., Sumrada, R.: Modelling the Rural Land Transaction Procedure. Land Use Policy 25(2), 286–297 (2008)CrossRefGoogle Scholar
  29. 29.
    Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining. In: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 80–86. AAAI Press, Menlo Park (1998)Google Scholar
  30. 30.
    Macal, C.M., North, M.J.: Agent-Based Modeling and Simulation: Desktop ABMS. In: Proceedings of the 2007 Winter Simulation Conference, Washington, DC, USA, pp. 95–106. IEEE Computer Society Press, Los Alamitos (2007)CrossRefGoogle Scholar
  31. 31.
    Midgley, D., Marks, R., Kunchamwar, D.: Building and Assurance of Agent-based Models: An Example and Challenge to the Field. Journal of Business Research 60(8), 884–893 (2007)CrossRefGoogle Scholar
  32. 32.
    Miller, H.J., Han, J.: Geographic Data Mining and Knowledge Discovery. Taylor & Francis, Abington (2001)CrossRefGoogle Scholar
  33. 33.
    Mirkin, B., Mirkin, B.G.: Clustering for Data Mining: A Data Recovery Approach. Chapman & Hall/CRC, Boca Raton (2005)CrossRefzbMATHGoogle Scholar
  34. 34.
    North, M.J., Macal, C.M.: Managing Business Complexity: Discovering Strategic Solutions With Agent-Based Modeling And Simulation. Oxford University Press, Oxford (2007)CrossRefGoogle Scholar
  35. 35.
    Piatetsky-Shapiro, G.: Knowledge Discovery in Databases: 10 Years After. ACM SIGKDD Explorations 1(2), 59–61 (2000)CrossRefGoogle Scholar
  36. 36.
    Polhill, J., Parker, D., Brown, D., Grimm, V.: Using the ODD Protocol for Describing Three Agent-based Social Simulation Models of Land-use Change. JASSS 11(2) (2008)Google Scholar
  37. 37.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco (1993)Google Scholar
  38. 38.
    Raghavan, S.N.R.: Data Mining in E-commerce: A Survey. Sadhana 30(2&3), 275–289 (2005)CrossRefGoogle Scholar
  39. 39.
    Remondino, M., Correndo, G.: Data Mining Applied to Agent Based Simulation. In: Proceedings of the 19th European Conference on Modelling and Simulation, Riga, Latvia (2005)Google Scholar
  40. 40.
    Remondino, M., Correndo, G.: MABS Validation through Repeated Executing and Data Mining Analysis. International Journal of Simulation Systems, Science & Technology 7(6), 10–21 (2006)Google Scholar
  41. 41.
    Rypielski, C., Wang, J.-C., Yen, D.C.: Data Mining techniques for customer Relationship Management. Technology in Society 24, 483–502 (2002)CrossRefGoogle Scholar
  42. 42.
    Shen, W., Norrie, D.H.: Agent-based Systems for Intelligent Manufacturing: A State-of-the-art Survey. Knowledge and Information Systems 1, 129–156 (1999)CrossRefGoogle Scholar
  43. 43.
    Shervais, S., Wakeland, W., Raffo, D.: Evolutionary Verification and Validation of Software Process Simulation Models. In: The 5th International Workshop on Software Process Simulation and Modelling, Edinburgh, Scotland (2004)Google Scholar
  44. 44.
    Smith, G.D.: Meta-heuristics in the KDD Process. In: Proceedings of the First UK Knowledge Discovery in Data Symposium, Liverpool, UK (2005)Google Scholar
  45. 45.
    Wang, J.T.L., Zaki, M.J., Toivonen, H.T.T., Shasha, D.E.: Data Mining in Bioinformatics. Springer, London (2005)zbMATHGoogle Scholar
  46. 46.
    Wang, W., Yang, J.: Mining Sequential Patterns from Large Data Sets. Springer, New York (2005)zbMATHGoogle Scholar
  47. 47.
    Weiss, S.M., Indurkha, N.: Predictive Data Mining: A Practical Guide. Morgan Kaufmann Publishers, San Francisco (1997)Google Scholar
  48. 48.
    Windrum, P., Gagiolo, G., Moneta, A.: Empirical Validation of Agent-based Models: Alternatives and Prospects. Journal of Artificial Societies and Social Simulation 10(2), 8 (2007)Google Scholar
  49. 49.
    Wooldridge, M.J., Jennings, N.R.: Intelligent Agent: Theory and Practice. Knowledge Engineering Review 10(2), 115–152 (1995)CrossRefGoogle Scholar
  50. 50.
    Wooldridge, M.J.: An Introduction to MultiAgent Systems. John Wiley & Sons, Chichester (2002)Google Scholar
  51. 51.
    Yilmaz, L.: Validation and Verification of Social Processes within Agent-based Computational Organization Models. Computational & Mathematical Organization Theory 12(4), 283–312 (2006)CrossRefzbMATHGoogle Scholar
  52. 52.
    Zhang, D., Zhou, L.: Discovering Golden Nuggets: Data Mining in Financial Application. IEEE Transaction on Systems, Man, and Cybernetics – Part C: Applications and Reviews 34(4), 513–552 (2004)CrossRefGoogle Scholar
  53. 53.
    Zhang, G.P.: Neural Networks for Classification: A Survey. IEEE Transactions on Systems, Man, and Cybernetics – Part C: Applications and Reviews 30(4), 451–462 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Omar Baqueiro
    • 1
  • Yanbo J. Wang
    • 2
  • Peter McBurney
    • 3
  • Frans Coenen
    • 3
  1. 1.Department of Structural Development of Farms and Rural AreasInstitute Of Agricultural Development in Central and Eastern Europe (IAMO)Halle (Saale)Germany
  2. 2.Information Management CenterChina Minsheng Banking Corp. Ltd.BeijingChina
  3. 3.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations