Skip to main content

An Improved Algorithm for TV-L 1 Optical Flow

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 5604)

Abstract

A look at the Middlebury optical flow benchmark [5] reveals that nowadays variational methods yield the most accurate optical flow fields between two image frames. In this work we propose an improvement variant of the original duality based TV-L 1 optical flow algorithm in [31] and provide implementation details. This formulation can preserve discontinuities in the flow field by employing total variation (TV) regularization. Furthermore, it offers robustness against outliers by applying the robust L 1 norm in the data fidelity term.

Our contributions are as follows. First, we propose to perform a structure-texture decomposition of the input images to get rid of violations in the optical flow constraint due to illumination changes. Second, we propose to integrate a median filter into the numerical scheme to further increase the robustness to sampling artefacts in the image data. We experimentally show that very precise and robust estimation of optical flow can be achieved with a variational approach in real-time. The numerical scheme and the implementation are described in a detailed way, which enables reimplementation of this high-end method.

Keywords

  • Input Image
  • Optical Flow
  • Outer Iteration
  • Illumination Change
  • Improve Algorithm

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

eBook
EUR   16.99
Price includes VAT (Finland)
  • ISBN: 978-3-642-03061-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
EUR   17.47
Price includes VAT (Finland)
  • ISBN: 978-3-642-03060-4
  • Dispatched in 3 to 5 business days
  • Exclusive offer for individuals only
  • Free shipping worldwide
    See shipping information.
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L., Weickert, J., Sánchez, J.: A scale-space approach to nonlocal optical flow calculations. In: Proceedings of the Second International Conference on Scale-Space Theories in Computer Vision, pp. 235–246 (1999)

    Google Scholar 

  2. Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. Int. J. Comput. Vision 2, 283–310 (1989)

    CrossRef  Google Scholar 

  3. Aubert, G., Deriche, R., Kornprobst, P.: Computing optical flow via variational techniques. SIAM J. Appl. Math. 60(1), 156–182 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Aujol, J.-F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition–modeling, algorithms, and parameter selection. Int. J. Comput. Vision 67(1), 111–136 (2006)

    CrossRef  Google Scholar 

  5. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A Database and Evaluation Methodology for Optical Flow. In: ICCV 1993, pp. 1–8 (2007)

    Google Scholar 

  6. Birchfield, S.: Derivation of Kanade-Lucas-Tomasi Tracking Equation. Technical Report (1997)

    Google Scholar 

  7. Black, M.J., Anandan, P.: A framework for the robust estimation of optical flow. In: ICCV 1993, pp. 231–236 (1993)

    Google Scholar 

  8. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast Global Minimization of the Active Contour/Snake Model. Journal of Mathematical Imaging and Vision (2007)

    Google Scholar 

  9. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  10. Bruhn, A., et al.: Variational optical flow computation in real time. IEEE Transactions on Image Processing 14(5), 608–615 (2005)

    CrossRef  MathSciNet  Google Scholar 

  11. Bruhn, A., Weickert, J., Kohlberger, T., Schnörr, C.: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. Int. J. Comput. Vision 70(3), 257–277 (2006)

    CrossRef  Google Scholar 

  12. Camus, T.A.: Real-time quantized optical flow. Journal of Real-Time Imaging 3, 71–86 (1997); Special Issue on Real-Time Motion Analysis

    Google Scholar 

  13. Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  14. Chambolle, A.: Total variation minimization and a class of binary MRF models. Energy Minimization Methods in Computer Vision and Pattern Recognition, 136–152 (2005)

    Google Scholar 

  15. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. In: ICAOS 1996, Paris, vol. 219, pp. 241–252 (1996)

    Google Scholar 

  16. Devillard, N.: Fast median search: an ANSI C implementation (1998), http://www.eso.org/ndevilla/median/ (visited October 2008)

  17. Haussecker, H., Fleet, D.J.: Estimating Optical Flow with Physical Models of Brightness Variation. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 661–674 (2001)

    CrossRef  Google Scholar 

  18. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    CrossRef  Google Scholar 

  19. Mémin, E., Pérez, P.: Hierarchical estimation and segmentation of dense motion fields. Int. J. Comput. Vision 46(2), 129–155 (2002)

    CrossRef  MATH  Google Scholar 

  20. Mileva, Y., Bruhn, A., Weickert, J.: Illumination-robust Variational Optical Flow with Photometric Invariants. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 152–162. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  21. Nagel, H.-H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 8, 565–593 (1986)

    CrossRef  Google Scholar 

  22. Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. Int. J. Comput. Vision, 141–158 (2006)

    Google Scholar 

  23. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Google Scholar 

  24. Stewart, E.: Intel Integrated Performance Primitives: How to Optimize Software Applications Using Intel IPP. Intel Press (2004) ISBN 0971786135

    Google Scholar 

  25. Strzodka, R., Garbe, C.: Real-time motion estimation and visualization on graphics cards. In: IEEE Visualization 2004, pp. 545–552 (2004)

    Google Scholar 

  26. Trobin, W., Pock, T., Cremers, D., Bischof, H.: An Unbiased Second-Order Prior for High-Accuracy Motion Estimation. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 396–405. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  27. Wedel, A., Pock, T., Braun, J., Franke, U., Cremers, D.: Duality TV-L1 flow with fundamental matrix prior. Image and Vision Computing New Zealand (November 2008)

    Google Scholar 

  28. Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., Cremers, D.: Efficient Dense Scene Flow from Sparse or Dense Stereo Data. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 739–751. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  29. Weickert, J., Brox, T.: Diffusion and regularization of vector- and matrix-valued images. Inverse Problems, Image Analysis and Medical Imaging. Contemporary Mathematics 313, 251–268 (2002)

    CrossRef  MathSciNet  Google Scholar 

  30. van de Weijer, J., Gevers, T.: Robust Pptical Flow from Photometric Invariants. In: International Conference on Image Processing (2004)

    Google Scholar 

  31. Zach, C., Pock, T., Bischof, H.: A Duality Based Approach for Realtime TV-L1 Optical Flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D. (2009). An Improved Algorithm for TV-L 1 Optical Flow. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds) Statistical and Geometrical Approaches to Visual Motion Analysis. Lecture Notes in Computer Science, vol 5604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03061-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03061-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03060-4

  • Online ISBN: 978-3-642-03061-1

  • eBook Packages: Computer ScienceComputer Science (R0)