Skip to main content

Abstract

From a first impression, the concept behind the FRRPP process is nothing special compared to polymerization-induced phase separation processes (PIPS) (Oh and Rey, 2002), wherein polymer formation induces conventional phase separation at temperatures below the upper critical solution temperature (UCST). What people fail to take into account are the effects of the polymerization reaction exotherm (heat generation) in the accompanying phase separation process. It is noted from Section 1.3 that adiabatic temperature rises from free-radical chain polymerizations are in the order of hundreds of degrees Celsius. Also, from Section 1.1, it is noted that at these temperature rises, polymer-small molecule mixtures can shift from a true solution to a phase separated system above the lower critical solution temperature (LCST). Based on the discussion in using Eqs. (1.2.9–1.2.14), we note that high-temperature domains dissipate heat faster as they become smaller, unless the mechanism of heat dissipation becomes inherently inefficient, such as conduction through gases or heat transfer via radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, A., and Flory, P. J., 1965. J. Am. Chem. Soc., 87, 1838–1846.

    Article  CAS  Google Scholar 

  • Achilias, D. S., and Kiparissides, C., 1992. Macromolecules, 25, 3739–3750.

    Article  CAS  Google Scholar 

  • Aggarwal, A., 1993. M.S. Thesis, Michigan Technological University.

    Google Scholar 

  • Aggarwal, A., Saxena, R., Wang, B., and Caneba, G. T., 1996. J. Appl. Polym. Sci., 62, 2039–2051.

    Article  CAS  Google Scholar 

  • Balke, S. T. and Hamielec, A. E., 1973. J. Appl. Polym. Sci., 17, 905.

    Google Scholar 

  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960. Transport Phenomena, John Wiley and Sons, New York, p. 350.

    Google Scholar 

  • Cahen, G., and Treille, P., 1961. Nuclear Engineering, Allyn and Bacon, Boston.

    Google Scholar 

  • Caneba, G. T., and Soong, D. S., 1985a. Macromolecules, 18, 2538.

    Google Scholar 

  • Caneba, G. T., and Soong, D. S., 1985b. Macromolecules, 18, 2545.

    Google Scholar 

  • Caneba, G. T., 1992a. Adv. Polym. Technol., 11, 277.

    Google Scholar 

  • Caneba, G. T., 1992b. U.S. Patent No. 5,173,551, December 22.

    Google Scholar 

  • Caneba, G. T., 2007a. “Formation of Radicalized Vinylidene Chloride Copolymer Particulates and Related Materials”, Provisional U.S. Patent Application, June.

    Google Scholar 

  • Caneba, G. T., 2007b. “Multifunctional Multipolymeric Surfactants for Oil-Bitumen Recovery”, U.S. Patent and PCT Applications, February 9.

    Google Scholar 

  • Caneba, G. T., and Dar, Y., 2005. “Free-Radical Retrograde-Precipitation Copolymers and Process of Making the Same”, U.S. Patent Application 10/045,725, and Divisional Patent Application, 11/181,481, Filed July 14.

    Google Scholar 

  • Caneba, G. T., and Saxena, R., 1992. Proceedings of the A.I.Ch.E. Annual Meeting, Miami, FL, November 1–6.

    Google Scholar 

  • Caneba, G. T., Zhao, Y., and Dar, Y., 2003. J. Appl. Polym. Sci., 89(2), 426.

    Article  CAS  Google Scholar 

  • Chiu, W. Y., Carratt, G. M., and Soong, D. S., 1983. Macromolecules, 16, 348–357.

    Article  CAS  Google Scholar 

  • Dar, Y., 1999. Ph.D. Dissertation, Michigan Technological University.

    Google Scholar 

  • Dar, Y., and Caneba, G. T., 2002. Chem. Eng. Commun., 189, 571.

    Article  CAS  Google Scholar 

  • Dar, Y., and Caneba, G. T., 2004. Chem. Eng. Commun., 191, 1634.

    Article  CAS  Google Scholar 

  • Dar, Y. L., Wang, B., Simmons, J., Champnella, D., and Caneba, G. T., 2005. “Studies of a Free-Radical Retrograde-Precipitation Polymerization (FRRPP)”, poster presented at the A.I.Ch.E. Annual Meeting, Miami, FL, November.

    Google Scholar 

  • De Gennes, P., 1979. Scaling Concepts in Polymer Physics, Cornell University Press, New York.

    Google Scholar 

  • Dean, J. A., 1985. Lange’s Handbook of Chemistry, 13th Ed., McGraw-Hill Book Co., New York.

    Google Scholar 

  • Doi, M., 1996. Introduction to Polymer Physics, Clarendon Press, Oxford.

    Google Scholar 

  • Fried, J. R., 1995. Polymer Science and Technology, Prentice-Hall, Englewood Cliffs, NJ, , ISBN 0-13-685561-X, p. 134.

    Google Scholar 

  • Hiroaki, K., Suzuki, H., and Matsumura, S., 2008. U.S. Patent No. 7,338,997.

    Google Scholar 

  • Howell, P. J., Skillerne de Bristowe, B. J., and Stubley, D., 1971. J. Chem. Soc., (A), 397–400

    Google Scholar 

  • Immergut, E. H., and Brandrup, J., 1989. Polymer Handbook, 3rd ed., John Wiley and Sons, New York.

    Google Scholar 

  • Kholodenko, A. L., and Freed, K. F. 1984. J. Phys. A: Math. Gen., 17, 2703–2727

    Article  CAS  Google Scholar 

  • Louie, B. M., 1984. M.S. Thesis, University of California-Berkeley, CA.

    Google Scholar 

  • McMaster, L. P., 1975, Adv. Chem. Ser., No. 142, N. A. Platzer (Ed.), pp. 43–65.

    Google Scholar 

  • Nierlich, M., Cotton, J. P., and Farnoux, B., 1978. J. Chem. Phys., 69, 1379–1383.

    Article  CAS  Google Scholar 

  • Nishio, I., Swislow, G., Sun, S., and Tanaka, T., 1982. Nature, 300(18), 243.

    Article  CAS  Google Scholar 

  • Odian, G., 1991. Principles of Polymerization, John Wiley and Sons, New York.

    Google Scholar 

  • Olabisi, O., Robenson, L. M., and Shaw, M. T., 1979. Polymer-Polymer Miscibility, Academic Press, New York, Chapter 2, pp. 75–104.

    Google Scholar 

  • Oh, J., and Rey, A. D., 2002. “Computer simulation of functional polymeric materials formation via polymerization-induced phase separation under a temperature gradient”, in: Phase Separation in Polymer Solutions and Blends, P. K. Chan (Ed.), Research Signpost, Trivandrum, India.

    Google Scholar 

  • Raos, G., and Allegra, G. 1996. J. Chem. Phys., 104, 1626–1645.

    Article  CAS  Google Scholar 

  • Rodriguez, F., Cohen, C., Ober, C., and Archer, L. A., 2003. Principles of Polymer Systems, Taylor and Francis, New York, p. 178.

    Google Scholar 

  • Sanchez, I. C., 1979. Macromolecules, 12(5), 980–988.

    Article  CAS  Google Scholar 

  • Shi, L., 1997. M.S. Thesis, Michigan Technological University.

    Google Scholar 

  • Soh, S. K., and Sundberg, D. C., 1982. J. Polym. Sci.: Polym. Chem. Ed., 20, 315–1329.

    Article  Google Scholar 

  • Strobl, G., 1996. The Physics of Polymers, Springer Verlag, Berlin.

    Google Scholar 

  • Tirumala, V. R., 2003a. Ph.D. dissertation, Michigan Technological University.

    Google Scholar 

  • Tirumala, V., Dar, Y., Wang, H.-H., Mancini, D., and Caneba, G. T., 2003b. Adv. Polym. Technol., 22, 126.

    Google Scholar 

  • Tirumala, V., Divan, R., Mancini, D., and Caneba, 2003c. “Lithographically-Assisted Synthesis of High Aspect-Ratio Hydrogel Microstructures”, this paper was partly presented at the Fifth International Workshop on High Aspect Ratio Microstructure Technology (HARMST), Monterey, CA, June 15–17.

    Google Scholar 

  • Tirumala, V., Mancini, D., and Caneba, G. T., 2004a. “Synthesis of ultrafast response microgels for MEMS applications”, Smart Structures and Materials, SPIE Conference, 5389, 221–228.

    Google Scholar 

  • Tirumala, V., Mancini, D., and Caneba, G. T., 2004b. “In Situ Fabrication of Thermoreversible Microgels”, Proceedings of the IEEE International Conference on Intelligent Sensing and Information Processing, M. Palaniswami, C. Chandrasekhar, G. K. Vengayamoorthy, S. Mohan, and M. K. Ghantasala (Eds.), January 4–7, Chennai, India, pp. 196–200.

    Google Scholar 

  • Tirumala, V., Guo, L., Caneba, G. T., Mancini, D., Thiyagarajan, P., and Barker, J. G., 2004c. “USANS Investigation of Poly(N-isopropylacrylamide) Gels prepared from Synchrotron-Radiation-Induced Polymerization on a Retrograde-Precipitation Environment”, Proceedings of the American Conference on Neutron Scattering, June 6–10, College Park, Maryland.

    Google Scholar 

  • Tirumala, V., Divan, R., Mancini, D. C., and Caneba, G. T., 2005a. Microsystems Technol. J., 11(4–5), 347–352.

    Google Scholar 

  • Tirumala, V., Caneba, G. T., Mancini, D. C., and Wang, H. -H., 2005b. U.S. Patent No. 6,869,983, March 22.

    Google Scholar 

  • Vrentas, J. S., and J. L. Duda, 1977. J. Polym. Sci.: Polym Phys. Ed., 15, 417–439.

    Article  CAS  Google Scholar 

  • Wang, B., 1997. Ph.D. Dissertation, Michigan Technological University.

    Google Scholar 

  • Wang, B., Dar, Y., Shi, L., and Caneba, G. T., 1999. J. Appl. Polym. Sci., 71, 761–774.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Caneba .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Caneba, G. (2010). The FRRPP Concept. In: Free-Radical Retrograde-Precipitation Polymerization (FRRPP). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03025-3_2

Download citation

Publish with us

Policies and ethics