Skip to main content
  • 616 Accesses

Abstract

An adequate understanding of the FRRPP process can never be achieved without probing into its underlying concepts, since it is a synergistic combination of thermodynamic, transport, and polymer chain-reaction kinetics. The overall result is an unconventional polymerization and energetic behavior that requires the conceptual and mathematical understanding to link all FRRPP features into a coherent picture. Since its necessary condition is found in a phase behavior of polymer mixtures under equilibrium conditions, it is appropriate that the start of presentation of the technical aspects of the FRRPP process is in its relevant thermodynamic concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The IPPC is neither the binodal nor the spinodal, but the phenomenon happens within the spinodal envelope. In our experiment, the spinodal can only be approximated. But, the IPPC may play a very important role in practical situations. Before the system enters the IPPC from the corresponding CPC curve, it will remain partially cloudy without precipitation with stirring for a very long time. After the composition change brings the system into the IPPC region, it will precipitate even with the stirring. That means, the IPPC is the boundary whereby the real system begins to precipitate rapidly.

References

  • Achilias, D. S., and Kiparissides, C., 1992. Macromolecules, 25, 3739–3750.

    Article  CAS  Google Scholar 

  • Aggarwal, A., 1993. M.S. Thesis, Michigan Technological University.

    Google Scholar 

  • Altena, F. W., and Smolders, C. A., 1982. Macromolecules, 15, 1491–1497.

    Article  CAS  Google Scholar 

  • Anolick, C., and Goffinet, J. S., 1966. U.S. Patent No. 3,553,156.

    Google Scholar 

  • Barrer, R. M., 1957. J. Phys. Chem., 61, 178.

    Article  CAS  Google Scholar 

  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960. Transport Phenomena, John Wiley and Sons, New York, p. 350.

    Google Scholar 

  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 2007. Transport Phenomena, 2nd Ed., John Wiley and Sons, New York.

    Google Scholar 

  • Boom, R. M., Van den Boomgaard, Th., and Smolders, C. A., 1994. Macromolecules, 27, 2034–2040.

    Article  CAS  Google Scholar 

  • Bueche, F., 1953. J. Chem. Phys., 21, 1850.

    Article  CAS  Google Scholar 

  • Cahn, J. W., 1956. Acta Metall., 4, 449.

    Article  CAS  Google Scholar 

  • Cahn, J. W., 1957. Acta Metall., 5, 169.

    Article  CAS  Google Scholar 

  • Cahn, J. W., 1961. Acta Metall., 9, 795.

    Article  CAS  Google Scholar 

  • Cahn, J. W., and Hilliard, J. E., 1958. J. Chem. Phys., 28, 258.

    Article  CAS  Google Scholar 

  • Cahn, J. W., and Hilliard, J. E., 1959. J. Chem. Phys., 31, 688.

    Article  CAS  Google Scholar 

  • Caneba, G. T., 1992a. Adv. Polym. Technol., 11, 277.

    Google Scholar 

  • Caneba, G. T., 1992b. U.S. Patent No. 5,173,551, December 22.

    Google Scholar 

  • Caneba, G. T., and Saxena, R., 1992. Proceedings of the A.I.Ch.E. Annual Meeting, Miami, FL, November 1–6.

    Google Scholar 

  • Caneba, G. T., and Saxena, R., 1996. Polym. Eng. Sci., 55, 753.

    Google Scholar 

  • Caneba, G. T., and Shi, L., 2002. “Lower critical solution temperature of polymer-small molecule systems: a review”, in: Phase Separation in Polymer Solutions and Blends, P. K. Chan (Ed.), Research Signpost, ISBN #81-7736-097-3, Chapter 4, pp. 63–104.

  • Caneba, G. T., and Soong, D. S., 1985a. Macromolecules, 18, 2538.

    Google Scholar 

  • Caneba, G. T., and Soong, D. S., 1985b. Macromolecules, 18, 2545.

    Google Scholar 

  • Caneba, G. T., Xu, Z., and Dar, Y. L., 2009. J. Appl. Polym. Sci. 113, 3872–3882.

    Google Scholar 

  • Carbaugh, D. C., 1991. Presented at the Engineering Foundation Conference in Polymer Reaction Engineering, Santa Barbara, CA, March 10–15.

    Google Scholar 

  • Carslaw, H. S., and Jaeger, J. C., 1959. Conduction of Heat in Solids, Oxford University Press, London.

    Google Scholar 

  • Casassa, E. F., and Berry, G. C., 1989. “Polymer solution”, in: Comprehensive Polymer Science, G. Allen et al. (Ed.), Elsevier Science Inc., USA, Vol. 2, Chapter 3, pp. 105–106.

    Google Scholar 

  • Castro, A. J., 1981. U.S. Patent No. 4,247,498, January 27.

    Google Scholar 

  • Charlet, G., and Delmas, G., 1981. Polymer, 22, 1181–1189.

    Article  CAS  Google Scholar 

  • Chen, Y.­ L., Solc, K., and Caneba, G. T., 1993. Polym. Eng. Sci., 33, 1033–1041.

    Google Scholar 

  • Cohen, M. H., and Turnbull, J., 1959. J. Chem. Phys., 31, 1164.

    Article  CAS  Google Scholar 

  • Condo, P. D., and Radosz, M., 1996. Fluid Phase Equilib., 117, 1–10.

    Article  CAS  Google Scholar 

  • Coriell, S. R., and Sekerka, R. F., 1983. J. Crystal Growth, 61, 499.

    Article  CAS  Google Scholar 

  • Crank, J., 1970. Mathematics of Diffusion, Oxford University Press, London.

    Google Scholar 

  • Crank, J., and Park, G. S., 1968. Diffusion in Polymers, Academic Press, New York.

    Google Scholar 

  • De Fontaine, D., 1975. “Phase changes”, in: Treatise on Solid State Chemistry, N. B. Hannay (Ed.), Plenum Press, New York, Vol. 5, pp. 129–178.

    Google Scholar 

  • DiBenedetto, A. T., 1963. J. Polym. Sci., A1, 3459, 3477.

    Google Scholar 

  • DiBenedetto, A. T., and Paul, D. R., 1964. J. Polym. Sci., 2, 1001.

    CAS  Google Scholar 

  • Doolittle, A. K., 1951. J. Appl. Phys., 22, 1471.

    Article  CAS  Google Scholar 

  • Doolittle, A. K., 1952. J. Appl. Phys., 23, 236.

    Article  CAS  Google Scholar 

  • Duda, J. S., and Vrentas, J. L., 1971. AIChE J., March, 464.

    Google Scholar 

  • Eliassaf, J., and Silberberg, A., 1962. Polymer (London), 1962(3), 555–564.

    Article  Google Scholar 

  • Feke, G. T., and Prins, W., 1974. Macromolecules, 7, 527.

    Article  CAS  Google Scholar 

  • Fitts, D. D., 1962. Nonequilibrium Thermodynamics, McGraw-Hill, New York, .

    Google Scholar 

  • Flory, P. J., 1942. J. Chem. Phys., 10, 51–61.

    Article  CAS  Google Scholar 

  • Flory, P. J., 1970. Disc. Faraday Soc., 49, 7–29.

    Article  Google Scholar 

  • Fox, T. G., 1956. Bull. Am. Phys. Soc., 1, 123.

    CAS  Google Scholar 

  • Fredenslund, Aa., Gmeling, G., and Rasmussen, 1977. Vapor-Liquid Equilibria using UNIFAC, Elsevier, Amsterdam.

    Google Scholar 

  • Freeman, P. I., and Rowlinson J. S., 1960. Polymer, 1, 20.

    Article  CAS  Google Scholar 

  • Frisch, H. L., 1980. Polym. Eng. Sci., 20, 2.

    Article  Google Scholar 

  • Fujita, H., 1961. Fortschr. Hochpolym. Forsch., 3, 1.

    Article  CAS  Google Scholar 

  • Fujita, H., and Kishimoto, A., 1961. J. Chem. Phys., 34, 393.

    Article  CAS  Google Scholar 

  • Geankoplis, G. J., 2003. Transport Processes and Separation Process Principles, 4th ed., Prentice-Hall, New Jersey, pp. 34–234.

    Google Scholar 

  • Glasstone, S., Laidler, K. J., and Eyring, H., 1941. Theory of Rate Processes, McGraw-Hill, New York.

    Google Scholar 

  • Guggenheim, E. A., 1952. Mixtures, Oxford University Press, Oxford.

    Google Scholar 

  • Guo, H.­F., Laxminarayan, A., Caneba, G. T., and Solc, K., 1995. J. Appl. Polym. Sci., 55, 753–759.

    Google Scholar 

  • Hashimoto, T., Kumaki, J., and Kawai, H., 1983. Macromolecules, 16, 641.

    Google Scholar 

  • Hashimoto, T., Susaki, K., and Kawai, H., 1984. Macromolecules, 17, 2812.

    Google Scholar 

  • Hashimoto, T., Takenaka, M., and Izumitani, T., 1989. Polymer Commun., 30, 45.

    Google Scholar 

  • Hiatt, W. C. 1985. Materials Science of Synthetic Membranes, D. R. Lloyd (Ed.), ACS Symp. Ser. No. 269, pp. 229–244.

    Google Scholar 

  • Hiatt, W. C., Vitzthum, C. H., and Wagener, K. B. 1984. Polym. Mater., 50, 161.

    CAS  Google Scholar 

  • High, M. S., and Dinner, R. P., 1990. A.I.Ch.E. J., 36(11), 1625–1632.

    Article  CAS  Google Scholar 

  • Hillert, M., 1961. Acta Met., 9, 525, 179.

    Google Scholar 

  • Hopfenberg, H. B., and Frisch, H. L., 1969. J. Polym. Sci., B7, 405.

    Google Scholar 

  • Huggins, M. L.,1942. Ann. NY. Acad. Sci., 43, 431–443.

    Article  Google Scholar 

  • Inaba, N., Sato, K., Suzuki, S., and Hashimoto, T., 1986. Macromolecules, 19, 1690.

    Article  CAS  Google Scholar 

  • Irani, C. A., 1986. J. Appl. Polym. Sci., 31, 1879–1899.

    Article  CAS  Google Scholar 

  • Irani, C. A., Cozewith, C., and Kasegrande, S., 1980. U.S. Patent No. 4,319,021.

    Google Scholar 

  • Izumitani, T., and Hashimoto, T., 1985. J. Chem. Phys., 83(7), 1.

    Google Scholar 

  • Kanig, G., 1963. Kolloid-Z., 190, 1.

    Article  CAS  Google Scholar 

  • Kelley, F. N., and Bueche, J., 1961. J. Polym. Sci., 50, 549.

    Article  CAS  Google Scholar 

  • Kesting, R. E., 1971. Synthetic Polymeric Membranes, McGraw-Hill Book Co., New York.

    Google Scholar 

  • Koningsveld, R., 1968a. J. Polym. Sci., Part A-2, 6, 305–323.

    Google Scholar 

  • Koningsveld, R., 1968b. J. Polym. Sci., Part A-2, 6, 325–347.

    Google Scholar 

  • Kumaki, J., and Hashimoto, T., 1986. Macromolecules, 19, 763.

    Google Scholar 

  • Kumar, S. K., 1986. D. Sc. Thesis, Massachusetts Institute of Technology, MA.

    Google Scholar 

  • Kumins, C. A., and Roteman, J., 1961. J. Polym. Sci., 55, 663–699.

    Article  Google Scholar 

  • Laxminarayan, A., and Caneba, G. T., 1991. Polym. Eng. Sci., 31, p.1597.

    Article  CAS  Google Scholar 

  • Lifshitz, I. M., and Slyozov, V. V., 1961. J. Phys. Chem. Solids, 19, 35.

    Article  Google Scholar 

  • Liu, H., and Zhong, C., 2005. Ind. Eng. Chem. Res., 444, 634–638.

    Article  Google Scholar 

  • Louie, B. M., 1984. M.S. Thesis, University of California-Berkeley, CA.

    Google Scholar 

  • Mahabadi, H. K., and O’Driscoll, K. F., 1977a. J. Polym Sci.: Polym. Chem. Ed., 15, 283.

    Google Scholar 

  • Mahabadi, H. K., and O’Driscoll, K. 1977b. J. Macromol. Sci.–Chem., AII(5), 967.

    Google Scholar 

  • McHugh, M. A., and Guckes, T. L., 1985. Macromolecules, 18, 674.

    Article  CAS  Google Scholar 

  • McMaster, L. P., 1975, Adv. Chem. Ser., No. 142, N. A. Platzer (Ed.), pp. 43–65.

    Google Scholar 

  • Middleman, S., 1977. Fundamentals of Polymer Processing, McGraw-Hill Book Co., New York, p. 360.

    Google Scholar 

  • Molyneux, P., 1984. Water - Soluble Synthetic Polymers: Properties and Behavior, CRC Press, Inc., Boca Raton, Vol. 1, pp. 92–95.

    Google Scholar 

  • Morral, J. E., and Cahn, J. W., 1971. Acta Met., 19, 1037.

    Article  Google Scholar 

  • Nojima, S., Tsutsumi, K., and Nose, T., 1982. Polym. J., 14, 225.

    Google Scholar 

  • Nojima, S., Ohyama, Y., Yamaguchi, M., and Nose, T., 1982. Polym. J., 14, 907.

    Google Scholar 

  • North, A. M., 1974. “The influence of chain structure on the free radical termination reaction”. in: “Reactivity, Mechanism and Structure in Polymer Chemistry,” A.D. Jenkins and A. Ledwith (Eds.), Wiley-Interscience, New York.

    Google Scholar 

  • Nose, T., 1987. Phase Transitions, 8, 245.

    Google Scholar 

  • Odian, G., 1991. Principles of Polymerization, John Wiley and Sons, New York.

    Google Scholar 

  • Oh, J., and Rey, A. D., 2002. “Computer simulation of functional polymeric materials formation via polymerization-induced phase separation under a temperature gradient”, in: Phase Separation in Polymer Solutions and Blends, P. K. Chan (Ed.), Research Signpost, Trivandrum, India.

    Google Scholar 

  • Panayiotou, C., and Vera, J. H., 1982. Polym. J., 14, 681–694.

    Article  CAS  Google Scholar 

  • Patterson, D., 1969. Macromolecules, 2(6), 672–677.

    Article  CAS  Google Scholar 

  • Patterson, D., 1982. Polym. Eng. Sci., 22(2), 64–73.

    Article  Google Scholar 

  • Patterson, D., and Delmas, G., 1970. Disc. Faraday Soc., 49, 98–105.

    Article  Google Scholar 

  • Patterson, D., Delas, G., and Somcynsky, T., 1967. Polymer, 8, 503–516.

    Article  CAS  Google Scholar 

  • Porter, M. C. 1982. Harnessing Theory Pract. Appl., World Filtr. Congr., 3rd Ed., Vol. II, p. 451.

    Google Scholar 

  • Prausnitz, J. M., Lichtenthaler, R. N., and Azevedo, E. G. D., 1986. Molecular Thermodynamics of Fluid Phase Equilibria, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Prausnitz, J. M., Lichtenthaler, R. N., and Azevedo, E. G. D., 1999. Molecular Thermodynamics of Fluid Phase Equilibria, 3rd ed., Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Prigogine, I., 1957. The Molecular Theory of Solutions, North Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Rasmussen, D. H., 1982. J. Crystal Growth, 56, 45.

    Article  CAS  Google Scholar 

  • Rasmussen, D. H., Sivaramakrishnan, M., and Leedom, G. L., 1982. A.I.Ch.E. Symp. Ser., Crystallization Process Engineering, 1.

    Google Scholar 

  • Rehage, G., Ernst, O., and Fuhrmann, J., 1970. Disc. Faraday Soc., 49, 208.

    Article  Google Scholar 

  • Rodriguez, F., Cohen, C., Ober, C., and Archer, L. A., 2003. Principles of Polymer Systems, Taylor and Francis, New York, p. 178.

    Google Scholar 

  • Rogers, C. E., 1965. Physics and Chemistry of the Organic Solid State, D. Fox, M. M. Labes, and A. Weissberger (Eds.), Interscience, New York, Chapter 6, Vol. 2.

    Google Scholar 

  • Rogers, C. E., and Machin, D., 1972. CRC Critical Reviews in Macromolecular Science, April, 245.

    Google Scholar 

  • Saeki, S., Kuwahara, N., Konno, S., and Kaneko, M., 1973. Macromolecules, 6(2), 247–51.

    Article  Google Scholar 

  • Sanchez, I. C., 1979. Macromolecules, 12(5), 980–988.

    Article  CAS  Google Scholar 

  • Sanchez, I. C., and Lacombe, R. H., 1976. J. Phys. Chem., 80(21), 2352–2362.

    Article  CAS  Google Scholar 

  • Sanchez, I. C., and Lacombe, R. H., 1978. Macromolecules, 11(6), 1145–1156.

    Article  CAS  Google Scholar 

  • Sanchez, I. C., and Panayiotou, C. G., 1993. “Equations of state thermodynamics of polymer and related solutions”, in: Models for Thermodynamics and Phase Equilibria Calculations, Chapter 3, S. I. Sandler (Ed.), Marcel Dekker, Inc., New York, pp. 187–286.

    Google Scholar 

  • Sasaki, K., and Hashimoto, T., 1984. Macromolecules, 17, 2818.

    Google Scholar 

  • Saxena, R., 1991. M.S. Thesis, Michigan Technological University.

    Google Scholar 

  • Saxena, R., 2001. Ph.D. Dissertation, Michigan Technological University.

    Google Scholar 

  • Schmidt, A. D., and Ray, W. H., 1981. Chem. Eng. Sci., 36, 1401–1410.

    Article  CAS  Google Scholar 

  • Schmidt, A. D., Clinch, A. B., and Ray, W. H., 1984. Chem. Eng. Sci., 39, 419–432.

    Article  CAS  Google Scholar 

  • Seidell, A., and Linke, W. F., 1952. Solubilities of Inorganic and Organic Compounds, Supplement to the Third Edition, D. Van Nostrand Co. Inc., New York, pp. 578–673.

    Google Scholar 

  • Shewmon, P. G., 1969. Transformations in Metals, McGraw-Hill, New York.

    Google Scholar 

  • Shi, L., 1997. M.S. Thesis, Michigan Technological University.

    Google Scholar 

  • Shultz, A. R., and Flory, P. J. 1953. J. Am. Chem. Soc., 75, 3888.

    Article  CAS  Google Scholar 

  • Siggia, E. D. 1979. Phys. Rev., A20, 595.

    Google Scholar 

  • Siow, K. S., Delmas, G., and Patterson, D., 1972. Macromolecules, 5, 29.

    Article  CAS  Google Scholar 

  • Snyder, H. L., and Meakin, P., 1985. J. Polym. Sci. Polym. Symp., 73, 217.

    Google Scholar 

  • Snyder, H. L., Meakin, P., and Reich, S., 1983. Macromolecules, 16, 757.

    Google Scholar 

  • Somcynsky, T., 1982. Polym. Eng. Sci., 22(2), 58–63.

    Article  Google Scholar 

  • Teymour, F., 2004. AICHE Journal, 43, 145–156.

    Google Scholar 

  • Van Aartsen, J. J., 1970. Eur. Polym. J., 6, 919.

    Google Scholar 

  • Vasenin, R. M., 1960. Vysokomol. Seodin., 2, 861.

    Google Scholar 

  • Voight-Martin, I. G., Leister, K. H., Rosenau, R., and Koningsveld, R. 1986. J. Polym. Sci. B: Polym. Phys., 24, 723.

    Article  Google Scholar 

  • Vrentas, J. S., and J. L. Duda, 1977. J. Polym. Sci.: Polym Phys. Ed., 15, 417–439.

    Article  CAS  Google Scholar 

  • Vrentas, J. S., and Duda, J. L., 1982. A.I.Ch.E. J., 28, 229.

    Google Scholar 

  • Wang, B., 1997. Ph.D. Dissertation, Michigan Technological University.

    Google Scholar 

  • Wang, B., Dar, Y., Shi, L., and Caneba, G. T., 1999. J. Appl. Polym. Sci., 71, 761.

    Google Scholar 

  • Wilkens, J. B., 1957. Ph.D. Thesis, Cornell University.

    Google Scholar 

  • Wilkens, J. B., and Long, F. A., 1957. Trans. Faraday Soc., 53, 1146.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Caneba .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Caneba, G. (2010). Background. In: Free-Radical Retrograde-Precipitation Polymerization (FRRPP). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03025-3_1

Download citation

Publish with us

Policies and ethics