Skip to main content

Biconvex Aerofoil (Stefan Leicher)

  • Conference paper
  • 2084 Accesses

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 114))

Abstract

Aligned with the needs of the aeronautics industry the general aim of the UFAST project is to foster experimental and theoretical work in the highly non-linear area of unsteady shock wave boundary layer interaction (SWBLI). Although in the past several EU projects were aiming at transonic/supersonic flows, the area of unsteady shock wave boundary layer interaction has not yet been treated. Moreover, experimental methods as well as numerical approaches have been improved considerably.

The current test case is that of a biconvex airfoil in wind tunnel at buffeting flow conditions (McDevit et al, Levy). Three partners, EADS-MAS, IMFT and INCAS have participated in this task. All three partners have performed flow simulations while INCAS was responsible for the new experiments as well. Structured and unstructured grids and codes were used as well as URANS; DES and LES models were applied.

Contributors: S. Leicher, G. Barbut, M. Braza, C. Nae, F. Munteanu and M.V. Pricop.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwamborn, D., Kroll, N., Heinrich, R.: The DLR TAU-code: recent Applications in Research and Industry. In: European Conference on Computational Fluid Dynamics, Egmond ann Zee, ECCOMAS CFD 2006 (2006)

    Google Scholar 

  2. Jameson, A.: Time Dependent Calculations Using Multigrid with Application to Unsteady Flows past Airfoils and Wings. AIAA Paper 91–1596 (1991)

    Google Scholar 

  3. Rieger, H.: First Experiments with Detached-Eddy Simulations in the Aeronautics Industry. In: Symposium on Hybrid RANS-LES methods, Stockholm, Schweden, pp. 14–15 (July 2005)

    Google Scholar 

  4. Spalart, P.R., Allmaras, S.R.: A One-Equation Turbulence Model for Aerodynamic Flows. La Recherche Aerospatiale 1, 1–21 (1994)

    Google Scholar 

  5. Spalart, P.R., Jou, W.H., Strelets, M., Allmaras, S.R.: Components on the feasible of LES for wings and on hybrid RANS-LES approach. In: First AAFOSR International Conference on DES/LES, Ruston, Louisiana, August 4-8 (1997)

    Google Scholar 

  6. Spalart, P.R., Deck, S., Shur, M.L., et al.: A new Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities. Theoretical and Computational Fluid Dynamics 20(3) (2006)

    Google Scholar 

  7. MacDevitt, J.B.: Supercritical Flow about a Thick Circular-Arc Airfoil, NASA TM 78549

    Google Scholar 

  8. MacDevitt, J.B., Levy Jr., L.L., Deiwert, G.S.: Transonic Flow about a Thick Circular-Arc Airfoil. AIAA Journal 14(5), 606

    Google Scholar 

  9. Levy Jr., L.L.: Experimental and Computational Steady and Unsteady Transonic Flows about a Thick Airfoil. AIAA 16(564)

    Google Scholar 

  10. Haase, W., Aupoix, B., Bunge, U., Schwamborn, D. (eds.): FLOMANIA – A European initiative on flow physics modelling. Notes on Numerical Fluid Mechenics and Multidisciplinary Design, vol. 94. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  11. Haase, W., Peng, S.-H. (eds.): Advances in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechenics and Multidisciplinary Design, vol. 94. Springer, Heidelberg (2008)

    Google Scholar 

  12. Haase, W., Braza, M., Revell, A. (eds.): DESider – A European Effort on Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechenics and Multidisciplinary Design, vol. 103. Springer, Heidelberg (2009)

    Google Scholar 

  13. McDevitt, J.B., Levy, L.L., Deiwert, G.S.: Transonic flow about a thick circular-arc airfoil. AIAA Journal 14(5), 606–613 (1976)

    Article  Google Scholar 

  14. Tijdeman, H.: Investigation of the transonic flow around oscillation airfoils. NLR TR 77090 U, National Aerospace Laboratory, The Netherlands (1977)

    Google Scholar 

  15. Nae, C.: Numerical Simulation of the Synthetic Jet Actuator. In: ICA 0.266, ICAS 2000, Harrogate, UK (2000)

    Google Scholar 

  16. Mabey, D.G.: Oscillatory flows from shock induced separations on biconvex airfoils of varying thickness in ventilated wind tunnels. In: AGARD CP-296, France, September 14-19, pp. 11.1–14 (1980)

    Google Scholar 

  17. Nae, C.: Efficient LES using Beta-Gamma Scheme and Wall Laws. In: ICFD 2001, Oxford, U.K. (2001)

    Google Scholar 

  18. Vos, J., Chaput, E., Arlinger, B., Rizzi, A., Corjon, A.: Recent advances in aerodynamics inside the NSMB (Navier-Stokes Multi-Block) consortium. In: 36th Aerospace Sciences Meeting and Exhibit, AIAA Paper 1998–0802, Reno, USA (1998)

    Google Scholar 

  19. Roe, P.L.: Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. J. Comp. Phys. 43, 357–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  20. Van Leer, B.: Toward the ultimate conservation difference scheme: A second-order sequel to Godunov’s method. J. Comp. Phy. 32, 101–136 (1979)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doerffer, P., Hirsch, C., Dussauge, JP., Babinsky, H., Barakos, G.N. (2010). Biconvex Aerofoil (Stefan Leicher). In: Unsteady Effects of Shock Wave Induced Separation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03004-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03004-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03003-1

  • Online ISBN: 978-3-642-03004-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics