Efficient Construction of Safe Regions for Moving kNN Queries over Dynamic Datasets

  • Mahady Hasan
  • Muhammad Aamir Cheema
  • Xuemin Lin
  • Ying Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5644)

Abstract

The concept of safe region has been used to reduce the computation and communication cost for the continuous monitoring of k nearest neighbor (kNN) queries. A safe region is an area such that as long as a query remains in it, the set of its kNNs does not change. In this paper, we present an efficient technique to construct the safe region by using cheap RangeNN queries. We also extend our approach for dynamic datasets (the objects may appear or disappear from the dataset). Our proposed algorithm outperforms existing algorithms and scales better with the increase in k.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual partitioning: An efficient method for continuous nearest neighbor monitoring. In: SIGMOD Conference, pp. 634–645 (2005)Google Scholar
  2. 2.
    Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects. In: ICDE, pp. 631–642 (2005)Google Scholar
  3. 3.
    Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: Scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases. In: ICDE, pp. 643–654 (2005)Google Scholar
  4. 4.
    Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB, pp. 287–298 (2002)Google Scholar
  5. 5.
    Okabe, A., Boots, B., Sugihara, K.: Spatial tessellations: concepts and applications of Voronoi diagrams. John Wiley and Sons Inc., Chichester (1992)MATHGoogle Scholar
  6. 6.
    Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial queries. In: SIGMOD Conference, pp. 443–454 (2003)Google Scholar
  7. 7.
    Tao, Y., Papadias, D.: Time-parameterized queries in spatio-temporal databases. In: SIGMOD Conference, pp. 334–345 (2002)Google Scholar
  8. 8.
    Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: SSD, pp. 83–95 (1995)Google Scholar
  9. 9.
    Kulik, L., Tanin, E.: Incremental rank updates for moving query points. In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2006. LNCS, vol. 4197, pp. 251–268. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 79–96. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: The v*-diagram: a query-dependent approach to moving knn queries. PVLDB 1(1), 1095–1106 (2008)Google Scholar
  12. 12.
    Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformatica 6(2), 153–180 (2002)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mahady Hasan
    • 1
  • Muhammad Aamir Cheema
    • 1
  • Xuemin Lin
    • 1
  • Ying Zhang
    • 1
  1. 1.The University of New South WalesAustralia

Personalised recommendations