Skip to main content

Time-Aware Similarity Search: A Metric-Temporal Representation for Complex Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5644))

Abstract

Recent advances in information technology demand handling complex data types, such as images, video, audio, time series and genetic sequences. Distinctly from traditional data (such as numbers, short strings and dates), complex data do not possess the total ordering property, yielding relational comparison operators useless. Even equality comparisons are of little help, as it is very unlikely to have two complex elements exactly equal. Therefore, the similarity among elements has emerged as the most important property for comparisons in such domains, leading to the growing relevance of metric spaces to data search. Regardless of the data domain properties, the systems need to track evolution of data over time. When handling multidimensional data, temporal information is commonly treated as just one or more dimensions. However, metric data do not have the concept of dimensions, thus adding a plain “temporal dimension” does not make sense. In this paper we propose a novel metric-temporal data representation and exploit its properties to compare elements by similarity taking into account time-related evolution. We also present experimental evaluation, which confirms that our technique effectively takes into account the contributions of both the metric and temporal data components. Moreover, the experiments showed that the temporal information always improves the precision of the answer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Advances in Database Systems, vol. 32. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  2. Traina, A.J.M., Traina Jr., C., Bueno, J.M., Marques, P.M.d.A.: The metric histogram: A new and efficient approach for content-based image retrieval. In: VDB, Brisbane, Australia. IFIP Conference Proceedings, vol. 216, pp. 297–311. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  3. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces - index structures for improving the performance of multimedia databases. ACM Comput. Surv. 33(3), 322–373 (2001)

    Article  Google Scholar 

  4. Searcóid, M.Ó.: Metric Spaces. Springer Undergraduate Mathematics Series. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  5. Burkhard, W.A., Keller, R.M.: Some approaches to best-match file searching. Commun. ACM 16(4), 230–236 (1973)

    Article  MATH  Google Scholar 

  6. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: SODA, Austin, TX, USA, pp. 311–321. ACM, New York (1993)

    Google Scholar 

  7. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: VLDB, Athens, Greece, pp. 426–435. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  8. Traina Jr., C., Traina, A.J.M., Faloutsos, C., Seeger, B.: Fast indexing and visualization of metric datasets using Slim-trees. IEEE Trans. on Knowl. and Data Eng. 14(2), 244–260 (2002)

    Article  Google Scholar 

  9. Zhou, X., Wang, G., Zhou, X., Yu, G.: BM + -tree: A hyperplane-based index method for high-dimensional metric spaces. In: Zhou, L.-z., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 398–409. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Snodgrass, R.T.: The TSQL2 Temporal Query Language. Kluwer Academic Publishers, Dordrecht (1995)

    Book  MATH  Google Scholar 

  11. Sellis, T.K.: Research issues in spatio-temporal database systems. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 5–11. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: An optimized spatio-temporal access method for predictive queries. In: VLDB, Berlin, Germany, pp. 790–801. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  13. Kollios, G., Papadopoulos, D., Gunopulos, D., Tsotras, V.J.: Indexing mobile objects using dual transformations. VLDB J. 14(2), 238–256 (2005)

    Article  Google Scholar 

  14. Chen, S., Ooi, B.C., Tan, K.L., Nascimento, M.A.: St\(^{\mbox{2}}\)B-tree: a self-tunable spatio-temporal B\(^{\mbox{+}}\)-tree index for moving objects. In: SIGMOD, Vancouver, BC, Canada, pp. 29–42. ACM, New York (2008)

    Chapter  Google Scholar 

  15. Zhang, R., Lin, D., Ramamohanarao, K., Bertino, E.: Continuous intersection joins over moving objects. In: ICDE, Cancun, Mexico, pp. 863–872. IEEE, Los Alamitos (2008)

    Google Scholar 

  16. Leong Hou, U., Mamoulis, N., Yiu, M.L.: Continuous monitoring of exclusive closest pairs. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 1–19. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Corral, A., Torres, M., Vassilakopoulos, M., Manolopoulos, Y.: Predictive join processing between regions and moving objects. In: Atzeni, P., Caplinskas, A., Jaakkola, H. (eds.) ADBIS 2008. LNCS, vol. 5207, pp. 46–61. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: scalable incremental processing of continuous queries in spatio-temporal databases. In: SIGMOD, Paris, France, pp. 623–634. ACM, New York (2004)

    Google Scholar 

  19. Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual partitioning: An efficient method for continuous nearest neighbor monitoring. In: SIGMOD, Baltimore, Maryland, USA, pp. 634–645. ACM, New York (2005)

    Google Scholar 

  20. Papadopoulos, S., Sacharidis, D., Mouratidis, K.: Continuous medoid queries over moving objects. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 38–56. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Jensen, C.S., Lin, D., Ooi, B.C.: Continuous clustering of moving objects. IEEE Trans. Knowl. Data Eng. 19(9), 1161–1174 (2007)

    Article  Google Scholar 

  22. Zhang, Z., Yang, Y., Tung, A.K.H., Papadias, D.: Continuous k-means monitoring over moving objects. IEEE Trans. on Knowl. and Data Eng. 20(9), 1205–1216 (2008)

    Article  Google Scholar 

  23. Schroeder, M.: Fractals, Chaos, Power Laws, 6th edn. W. H. Freeman, New York (1991)

    MATH  Google Scholar 

  24. Faloutsos, C., Kamel, I.: Beyond uniformity and independence: Analysis of R-trees using the concept of fractal dimension. In: PODS, Minneapolis, MN, USA, pp. 4–13. ACM, New York (1994)

    Google Scholar 

  25. Belussi, A., Faloutsos, C.: Self-spacial join selectivity estimation using fractal concepts. ACM Trans. on Inf. Systems 16(2), 161–201 (1998)

    Article  Google Scholar 

  26. Traina Jr., C., Traina, A.J.M., Faloutsos, C.: Distance exponent: a new concept for selectivity estimation in metric trees. In: ICDE, San Diego, CA, USA, p. 195. IEEE, Los Alamitos (2000)

    Google Scholar 

  27. Malcok, M., Aslandogan, Y.A., Yesildirek, A.: Fractal dimension and similarity search in high-dimensional spatial databases. In: IRI, Waikoloa, Hawaii, USA, pp. 380–384. IEEE, Los Alamitos (2006)

    Google Scholar 

  28. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library of object images. Int. J. Comput. Vis. 61(1), 103–112 (2005)

    Article  Google Scholar 

  29. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. Addison-Wesley, Wokingham (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bueno, R., Kaster, D.S., Traina, A.J.M., Traina, C. (2009). Time-Aware Similarity Search: A Metric-Temporal Representation for Complex Data. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds) Advances in Spatial and Temporal Databases. SSTD 2009. Lecture Notes in Computer Science, vol 5644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02982-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02982-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02981-3

  • Online ISBN: 978-3-642-02982-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics