An Architecture for Automated Reasoning Systems for Genome-Wide Studies

  • Angelo Nuzzo
  • Alberto Riva
  • Mario Stefanelli
  • Riccardo Bellazzi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5651)

Abstract

The massive amounts of data generated by high-throughput experiments makes modern biomedical research a data-intensive discipline, shifting the research methodology from a hypothesis-based approach to a hypothesis-free one. A formal procedure should be defined to properly design a study, understand the outcomes and plan improvements for each task performed during the experiments. Such formal approach needs the identification of a high-level conceptual model of the knowledge discovery process occurring in genome-wide studies: this is what existing computational tools lack. Starting from an epistemological model of the discovery process proposed for diagnostic reasoning, we describe how the design and execution of modern genome-wide studies can be modelled using the same framework. We show the general validity of the model, how it can be instantiated to model typical scenarios of genome-wide studies, and how we use it to develop tools aimed at building semi-automated reasoning systems.

Keywords

Genome-wide studies decision support system reasoning models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nuzzo, A., Segagni, D., Milani, G., Rognoni, C., Bellazzi, R.: A Dynamic Query System for Supporting Phenotype Mining in Genetic Studies. Stud. Health Tech. Inf. (Medinfo 2007) 129(Pt 2), 1275–1279 (2007)Google Scholar
  2. 2.
    Nuzzo, A., Riva, A.: A Knowledge Management Tool for Translational Research. In: 1st AMIA Summit on Translational Bioinformatics, San Francisco, CA, p. 171 (2008)Google Scholar
  3. 3.
    Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Elnitski, L., Shah, P., Zhang, Y., Blankenberg, D., Albert, I., Taylor, J., Miller, W., Kent, W.J., Nekrutenko, A.: Galaxy: a platform for interactive large-scale genome analysis. Genome. Res. 15, 1451–1455 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Huang, W., Sherman, B.T., Tan, Q., Collins, J.R., Alvord, W.G., Roayaei, J., Stephens, R., Baseler, M.W., Lane, H.C., Lempicki, R.A.: The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8(9) R183 (2007)Google Scholar
  5. 5.
    Ramoni, M., Stefanelli, M., Magnani, L., Barosi, G.: An Epistemological Framework for Medical Knowledge-Based Systems. IEEE Trans. on Systems, Man and Cybernetics 22(6), 1361–1375 (1992)CrossRefGoogle Scholar
  6. 6.
    Balding, J.D.: A tutorial on statistical methods for population association studies. Nature Rev. Gen. 7(10), 781–791 (2002)CrossRefGoogle Scholar
  7. 7.
    Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J., Sklar, P., de Bakker, P.I.W., Daly, M.J., Sham, P.C.: PLINK: a toolset for whole genome association and population-based linkage analysis. Am. J. Hum. Genet. 81, 559–575 (2007)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Angelo Nuzzo
    • 1
  • Alberto Riva
    • 2
  • Mario Stefanelli
    • 3
  • Riccardo Bellazzi
    • 3
  1. 1.Centre for Tissue EngineeringUniversity of PaviaPaviaItaly
  2. 2.Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleUSA
  3. 3.Department of Computer Science and SystemsUniversity of PaviaPaviaItaly

Personalised recommendations