Advertisement

Mealtime Blood Glucose Classifier Based on Fuzzy Logic for the DIABTel Telemedicine System

  • Gema García-Sáez
  • José M. Alonso
  • Javier Molero
  • Mercedes Rigla
  • Iñaki Martínez-Sarriegui
  • Alberto de Leiva
  • Enrique J. Gómez
  • M. Elena Hernando
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5651)

Abstract

The accurate interpretation of Blood Glucose (BG) values is essential for diabetes care. However, BG monitoring data does not provide complete information about associated meal and moment of measurement, unless patients fulfil it manually. An automatic classification of incomplete BG data helps to a more accurate interpretation, contributing to Knowledge Management (KM) tools that support decision-making in a telemedicine system. This work presents a fuzzy rule-based classifier integrated in a KM agent of the DIABTel telemedicine architecture, to automatically classify BG measurements into meal intervals and moments of measurement. Fuzzy Logic (FL) tackles with the incompleteness of BG measurements and provides a semantic expressivity quite close to natural language used by physicians, what makes easier the system output interpretation. The best mealtime classifier provides an accuracy of 77.26% and does not increase significantly the KM analysis times. Results of classification are used to extract anomalous trends in the patient’s data.

Keywords

Diabetes Telemedicine Fuzzy Logic Classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Diabetes Control and Complications Research Group: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New England Journal of Medicine 329, 977–986 (1993)Google Scholar
  2. 2.
    International Diabetes Federation (IDF): Clinical guidelines task force, global guideline for type 2 diabetes, 2005. Technical report, TR (2005)Google Scholar
  3. 3.
    Benjamin, E.M.: Self-monitoring of blood glucose: The basics. Clin Diabetes 20(1), 45–47 (2002)CrossRefGoogle Scholar
  4. 4.
    Shea, S., Weinstock, R.S., Starren, J., et al., for the IDEATel Consortium: A randomized trial comparing telemedicine case management with usual care in older, ethnically diverse, medically underserved patients with diabetes mellitus. Journal of the American Medical Informatics Association 13(1), 40–51 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rigla, M., Hernando, M.E., Gómez, E.J., Brugués, E., García-Sáez, G., Capel, I., Pons, B., de Leiva, A.: Real-time continuous glucose monitoring together with telemedical assistance improves glycemic control and glucose stability in pump-treated patients. Diabetes Technology & Therapeutics 10(3), 194–199 (2008)CrossRefGoogle Scholar
  6. 6.
    Bellazzi, R., Arcelloni, M., Ferrari, P., Decata, P., Hernando, M.E., García, A., Gazzaruso, C., Gómez, E.J., Larizza, C., Fratino, P., Stefanelli, M.: Management of patients with diabetes through information technology: Tools for monitoring and control of the patients’ metabolic behavior. Diabetes Technology & Therapeutics 6(5), 567–578 (2004)CrossRefGoogle Scholar
  7. 7.
    Dinesen, B., Andersen, P.E.R.: Qualitative evaluation of a diabetes advisory system, diasnet. Journal of Telemedicine and Telecare 12(2), 71–74 (2006)CrossRefPubMedGoogle Scholar
  8. 8.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Parts I, II, and III. Information Sciences 8, 8, 9, 199–249, 301–357, 43–80 (1975)CrossRefGoogle Scholar
  9. 9.
    Mamdani, E.H.: Application of fuzzy logic to approximate reasoning using linguistic systems. IEEE Transactions on Computers 26(12), 1182–1191 (1977)CrossRefGoogle Scholar
  10. 10.
    Gómez, E.J., Hernando, M.E., Vering, T., Rigla, M., Bott, O., García-Sáez, G., Pretschner, P., et al.: The inca system: A further step towards a telemedical artificial pancreas. IEEE Transactions on Information Technology in Biomedicine 12(4), 470–479 (2008)CrossRefPubMedGoogle Scholar
  11. 11.
    García-Sáez, G., Hernando, M.E., Martínez-Sarriegui, I., Rigla, M., Torralba, V., Brugués, E., de Leiva, A., Gómez, E.J.: Architecture of a wireless personal assistant for telemedical diabetes care. International Journal of Medical Informatics 78(6), 391–403 (2009)CrossRefPubMedGoogle Scholar
  12. 12.
    Alonso, J.M., Guillaume, S., Magdalena, L.: KBCT: A knowledge management tool for fuzzy inference systems. Free software under GPL license (2003), http://www.mat.upm.es/projects/advocate/kbct.htm
  13. 13.
    Alonso, J.M., Magdalena, L., Guillaume, S.: HILK: A new methodology for designing highly interpretable linguistic knowledge bases using the fuzzy logic formalism. International Journal of Intelligent Systems 23, 761–794 (2008)CrossRefGoogle Scholar
  14. 14.
    Ichihashi, H., et al.: Neuro-fuzzy ID3: A method of inducing fuzzy decision trees with linear programming for maximizing entropy and an algebraic method for incremental learning. Fuzzy Sets and Systems 81, 157–167 (1996)CrossRefGoogle Scholar
  15. 15.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)Google Scholar
  16. 16.
    Plutowski, M., Sakata, S., White, H.: Cross-validation estimates imse. In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) Advances in Neural Information Processing Systems 6, pp. 391–398. Morgan Kaufmann, San Mateo (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gema García-Sáez
    • 1
  • José M. Alonso
    • 2
  • Javier Molero
    • 1
  • Mercedes Rigla
    • 3
  • Iñaki Martínez-Sarriegui
    • 1
  • Alberto de Leiva
    • 4
  • Enrique J. Gómez
    • 1
  • M. Elena Hernando
    • 1
  1. 1.Bioengineering and Telemedicine CentrePolitechnical University of Madrid, CIBER-BBN Networking Research CentreSpain
  2. 2.European Centre for Soft ComputingMieres (Asturias)Spain
  3. 3.Endocrinology Dept.Hospital de Sabadell, CIBER-BBN Networking Research CentreSpain
  4. 4.Endocrinology Dept.Hospital Sant Pau, CIBER-BBN Networking Research CentreBarcelonaSpain

Personalised recommendations