Conversational Case-Based Reasoning in Medical Classification and Diagnosis

  • David McSherry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5651)


In case-based reasoning (CBR) approaches to classification and diagnosis, a description of the problem to be solved is often assumed to be available in advance. Conversational CBR (CCBR) is a more interactive approach in which the system is expected to play an active role in the selection of relevant tests to help minimize the number of problem features that the user needs to provide. We present a new algorithm for CCBR called iNN(k) and demonstrate its ability to achieve high levels of accuracy on a selection of datasets related to medicine and health care, while often requiring the user to provide only a small subset of the problem features required by a standard k-NN classifier. Another important benefit of iNN(k) is a goal-driven approach to feature selection that enables a CCBR system to explain the relevance of any question it asks the user in terms of its current goal.


case-based reasoning classification diagnosis accuracy feature selection transparency explanation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holt, A., Bichindaritz, I., Schmidt, R., Perner, P.: Medical Applications in Case-Based Reasoning. Knowledge Engineering Review 20, 289–292 (2005)CrossRefGoogle Scholar
  2. 2.
    Leake, D., McSherry, D.: Introduction to the Special Issue on Explanation in Case-Based Reasoning. Artificial Intelligence Review 24, 103–108 (2005)CrossRefGoogle Scholar
  3. 3.
    Doyle, D., Cunningham, P., Bridge, D., Rahman, Y.: Explanation Oriented Retrieval. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 157–168. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Evans-Romaine, K., Marling, C.: Prescribing Exercise Regimens for Cardiac and Pulmo-nary Disease Patients with CBR. In: ICCBR 2003 Workshop on Case-Based Reasoning in the Health Sciences (2003)Google Scholar
  5. 5.
    McSherry, D.: Explaining the Pros. and Cons. of Conclusions in CBR. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 317–330. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    McSherry, D.: Interactive Case-Based Reasoning in Sequential Diagnosis. Applied Intelligence 14, 65–76 (2001)CrossRefGoogle Scholar
  7. 7.
    Aha, D.W., Breslow, L.A., Muñoz-Avila, H.: Conversational Case-Based Reasoning. Applied Intelligence 14, 9–32 (2001)CrossRefGoogle Scholar
  8. 8.
    Aha, D.W., McSherry, D., Yang, Q.: Advances in Conversational Case-Based Reasoning. Knowledge Engineering Review 20, 247–254 (2005)CrossRefGoogle Scholar
  9. 9.
    Bogaerts, S., Leake, D.: What Evaluation Criteria are Right for CCBR? Considering Rank Quality. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 385–399. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Gu, M., Aamodt, A.: Evaluating CBR Systems Using Different Data Sources: a Case Study. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 121–135. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    McSherry, D.: Minimizing Dialog Length in Interactive Case-Based Reasoning. In: 17th International Joint Conference on Artificial Intelligence, pp. 993–998. Morgan Kaufmann, San Francisco (2001)Google Scholar
  12. 12.
    McSherry, D., Hassan, S., Bustard, D.: Conversational Case-Based Reasoning in Self-Healing and Recovery. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 340–354. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Cendrowska, J.: PRISM: an Algorithm for Inducing Modular Rules. International Journal of Man-Machine Studies 27, 349–370 (1987)CrossRefGoogle Scholar
  14. 14.
    Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences (2007)Google Scholar
  15. 15.
    Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M., Goodenday, L.S.: Knowledge Discovery Approach to Automated Cardiac SPECT Diagnosis. Artificial Intelligence in Medicine 23, 149–169 (2001)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • David McSherry
    • 1
  1. 1.School of Computing and Information EngineeringUniversity of Ulster ColeraineNorthern IrelandUnited Kingdom

Personalised recommendations