Discovering Novel Adverse Drug Events Using Natural Language Processing and Mining of the Electronic Health Record

  • Carol Friedman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5651)


This talk presents an overview of our research in use of medical knowledge, natural language processing, the electronic health record, and statistical methods to automatically discover novel adverse drug events, which are serious problems world-wide.


Pharmacovigilance natural language processing electronic health records patient safety adverse drug events 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Classen, D.C., Pestotnik, S.L., Evans, R.S., Lloyd, J.F., Burke, J.P.: Adverse drug events in hospitalized patients. Excess length of stay, extra costs, and attributable mortality. JAMA 277(4), 301–306 (1997)CrossRefPubMedGoogle Scholar
  2. 2.
    Bates, D.W., Spell, N., Cullen, D.J., et al.: The costs of adverse drug events in hospitalized patients. Adverse Drug Events Prevention Study Group. JAMA 277(4), 307–311 (1997)CrossRefPubMedGoogle Scholar
  3. 3.
    Schneeweiss, S., Hasford, J., Gottler, M., Hoffmann, A., Riethling, A.K., Avorn, J.: Admissions caused by adverse drug events to internal medicine and emergency departments in hospitals: a longitudinal population-based study. Eur. J. Clin. Pharmacol. 58(4), 285–291 (2002)CrossRefPubMedGoogle Scholar
  4. 4.
    Chiang, A.P., Butte, A.J.: Data-driven methods to discover molecular determinants of serious adverse drug events. Clin. Pharmacol. Ther. 85(3), 259–268 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Amery, W.K.: Why there is a need for pharmacovigilance. Pharmacoepidemiol Drug Saf. 8(1), 61–64 (1999)CrossRefPubMedGoogle Scholar
  6. 6.
    Goldman, S., Kennedy, D., Graham, D., et al.: The clinical impact of adverse event reporting. Center for Drug Evaluation and Research. Food and Drug Administration (1996)Google Scholar
  7. 7.
    Moride, Y., Haramburu, F., Requejo, A.A., Begaud, B.: Under-reporting of adverse drug reactions in general practice. Br. J. Clin. Pharmacol. 43(2), 177–181 (1997)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wood, L., Martinez, C.: The general practice research database: role in pharmacovigilance. Drug Saf. 27(12), 871–881 (2004)CrossRefPubMedGoogle Scholar
  9. 9.
    Berlowitz, D.R., Miller, D.R., Oliveria, S.A., Cunningham, F., Gomez-Caminero, A., Rothendler, J.A.: Differential associations of beta-blockers with hemorrhagic events for chronic heart failure patients on warfarin. Pharmacoepidemiol. Drug Saf. 15(11), 799–807 (2006)CrossRefPubMedGoogle Scholar
  10. 10.
    Friedman, C., Shagina, L., Lussier, Y., Hripcsak, G.: Automated encoding of clinical documents based on natural language processing. J. Am. Med. Inform. Assoc. 11(5), 392–402 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lindberg, D., Humphreys, B., McCray, A.T.: The Unified Medical Language System. Meth. Inform. Med. 32, 281–291 (1993)PubMedGoogle Scholar
  12. 12.
    Cao, H., Hripcsak, G., Markatou, M.: A statistical methodology for analyzing co-occurrence data from a large sample. J. Biomed. Inform. 40(3), 343–352 (2007)CrossRefPubMedGoogle Scholar
  13. 13.
    Wang, X., Friedman, C., Chused, A., Markatou, M., Elhadad, N.: Automated knowledge acquisition from clinical narrative reports. AMIA Annu. Symp. Proc., 783–777 (2008)Google Scholar
  14. 14.
    Chen, E.S., Hripcsak, G., Xu, H., Markatou, M., Friedman, C.: Automated acquisition of disease-drug knowledge from biomedical and clinical documents: an initial study. J. Am. Med. Inf. Assoc. 15(1), 87–98 (2008)CrossRefGoogle Scholar
  15. 15.
    Wang, X., Hripcsak, G., Markatou, M., Friedman, C.: Active Computerized Pharmacovigilance using Natural Language Processing, Statistics, and Electronic Health Records: a Feasibility Study. J. Am. Med. Inform. Assoc. 16(3), 328–337 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang, X., Hripcsak, G., Friedman, C.: Characterizing environmental and phenotypic associations using information theory and electronic health records. In: 2009 AMIA Summit, March 15, p. 134 (full paper selected for publication in BMC Bioinformatics) (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carol Friedman
    • 1
  1. 1.Department of Biomedical InformaticsColumbia UniversityNew YorkUS

Personalised recommendations