Skip to main content

Heat and Moister Exchangers and the Booster® System: Technology and Clinical Implications

  • Chapter
  • First Online:

Abstract

It is well recognized that delivering warm, humidified gas to patients ventilated through an endotracheal or tracheostomy tube is of primarily importance. The upper airway and the normal heat and moisture exchanging process of inspired gases are bypassed during mechanical ventilation with endotracheal intubation or tracheostomy. A continuous loss of moisture and heat occurs and predisposes patients to serious airway damage. In addition, medical gases are dried to avoid condensation damage to valves and regulators in the distribution network. To prevent complications associated with ventilation with cold and dry gases, the addition of exogenous heat and humidity by the use of heated hot water systems (vaporizers or nebulizers) can be considered. Vaporizing humidifiers have some disadvantages: condensation of water that can be a source of infection, malfunctions, high maintenance costs, and increased workload for nursing staff. Heat and moisture exchangers (HMEs) with microbial filtration capacity (HME filters, HMEFs) may be a simple solution to the problems of conditioning respiratory gases and, eventually, of reducing the contamination of the apparatus and subsequent bacterial pneumonia. An important advance in the design of HMEs was made with the introduction of plastic foam impregnated with a hygroscopic substance as the active element. The hygroscopic substance chemically absorbs a portion of the expired water vapor on the humidifier element, which is collected by dry inspiratory gases. Paper-based condensation surfaces have also become available, and their efficiency is reinforced after impregnation with a hygroscopic substance. The HMEs preserve patients’ heat and water, and globally they recover 70% of expired heat and humidity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chalon J, Loew D, Malebranche J (1972) Effect of dry anesthetic gases on tracheobronchial ciliated epithelium. Anesthesiology 37:338–343

    Article  PubMed  CAS  Google Scholar 

  2. Marfiata S, Donahoe PK, Hendren WH (1975) Effect of dry and humidified gases on the respiratory epithelium in rabbits. J Pediatr Surg 10:583–587

    Article  Google Scholar 

  3. Forbes AR (1974) Temperature, humidity and mucus flow in the intubated trachea. Br J Anaesth 46:29–34

    Article  PubMed  CAS  Google Scholar 

  4. Noguchi H, Takumi Y, Aochhi O (1973) A study of humidification in tracheostomized dogs. Br J Anaesth 45:844–848

    Article  PubMed  CAS  Google Scholar 

  5. Chalon J, Patel C, Ali M et al (1979) Humidity and the anesthetized patient. Anesthesiology 50:195–198

    Article  PubMed  CAS  Google Scholar 

  6. Noguchi H, Takami Y, Rochi O (1973) A study of humidification in tracheostomized dogs. Br J Anaesth 45:844–847

    Article  PubMed  CAS  Google Scholar 

  7. Bethune DW, Shelley MP (1985) Hydrophobic versus hygroscopic heat and moisture exchangers. Anaesthesia 40:210–211

    Article  PubMed  CAS  Google Scholar 

  8. Mebius CA (1989) Comparative evaluation of disposable humidifiers. Acta Anaesthesiol Scand 27:403–409

    Article  Google Scholar 

  9. Chalon J, Markham J, Ali M et al (1984) The Pall Ultipor breathing circuit filter—an efficient heat and moisture exchanger. Anesth Analg 63:566–570

    Article  PubMed  CAS  Google Scholar 

  10. Shelly M, Bethune DW, Latimer RD (1986) A comparison of five heat and moisture exchangers. Anaesthesia 41:527–532

    Article  PubMed  CAS  Google Scholar 

  11. Turtle MJ, Ilsley AH, Rutten AJ (1987) An evaluation of six disposable heat and moisture exchangers. Anaesth Intensive Care 15:317–322

    PubMed  CAS  Google Scholar 

  12. Weeks DB, Ramsey FM (1983) Laboratory investigation of six artificial noses of use during endotracheal anesthesia. Anesth Analg 62:758–763

    Article  PubMed  CAS  Google Scholar 

  13. Martin C, Papazian L, Perrin G et al (1994) Preservation of humidity and heat of respiratory gases in patients with a minute ventilation  >  10 l/min. Crit Care Med 22:1871–1876

    PubMed  CAS  Google Scholar 

  14. Lotti GA, Olivei MC, Brasch Antonio (1999) Mechanical effects of heat-moisture exchanger in ventilated patients. Crit Care 3:R877

    Google Scholar 

  15. Lotti GA, Olivei MC, Palo M (1997) Unfavorable mechanical effects of heat and moisture exchangers in ventilated patients. Intensive Care Med L3:399–405

    Google Scholar 

  16. Pelosi P, Solca M, Ravagnan I, Tubiolo D, Ferrario L, Gattinoni L (1996) Effects of heat and moisture exchangers on minute ventilation ventilatory drive, and work of breathing during pressure-support ventilation in acute respiratory. Crit Care Med 24:1184–1188

    Article  PubMed  CAS  Google Scholar 

  17. Conti G, De BR, Rocco M, Pelaia P, Antonelli M, Bufi M et al (1990) Effects of the heat-moisture exchangers on dynamic hyperinflation of mechanically ventilated COPD patients. Intensive Care Med 16:441–443

    Article  PubMed  CAS  Google Scholar 

  18. Martin C, Thomachot L, Quinio B et al (1995) Comparing two heat and moisture exchangers with one vaporizing humidifier in patients with minute ventilation greater than 10 L/min. Chest 107:1411–1415

    Article  PubMed  CAS  Google Scholar 

  19. Branson RD, Davis K, Campbell RS et al (1993) Humidification in the intensive care unit: prospective study of a new protocol utilizing heated humidification and a hydroscopic condenser humidifier. Chest 104:1800–1805

    Article  PubMed  CAS  Google Scholar 

  20. Thomachot L, Vialet R, Viguier JM et al (1998) Efficacy of heat and moisture exchangers changing every 48 hours rather than 24 hours. Crit Care Med 26:477–481

    Article  PubMed  CAS  Google Scholar 

  21. Djejaini K, Billiard M, Mier L et al (1995) Changing heat and moisture exchangers every 48 hours rather than 24 hours does not affect their efficacy and the incidence of nosocomial pneumonia. Am J Respir Crit Care Med 152:1562–1569

    Google Scholar 

  22. Thomachot L, Boisson C, Arnaud S et al (2000) Changing heat and moisture exchangers after 96 hours rather than after 24 hours: a clinical and microbiological evaluation. Crit Care Med 28:714–720

    Article  PubMed  CAS  Google Scholar 

  23. Davis K, Evans SL, Campbell RS et al (2000) Prolonged use of heat and moisture exchangers does not affect device efficiency or frequency rate of nosocomial pneumonia. Crit Care Med 28:1412–1418

    Article  PubMed  Google Scholar 

  24. Ricard JD, Le Mière E, Markowicz P et al (2000) Efficiency and safety of mechanical ventilation with a heat and moisture exchanger changed only once a week. Am J Respir Crit Care Med 161:104–109

    PubMed  CAS  Google Scholar 

  25. Kollef HM, Shapiro SD, Boyd V et al (1998) A randomized clinical trial comparing an extended-use hygroscopic condenser humidifier with heated-water humidification in mechanically ventilated patients. Chest 113:759–767

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Michel, F., Leone, M., Martin, C. (2012). Heat and Moister Exchangers and the Booster® System: Technology and Clinical Implications. In: Esquinas, A. (eds) Humidification in the Intensive Care Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02974-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02974-5_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02973-8

  • Online ISBN: 978-3-642-02974-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics