Conceptual Graph Interchange Format for Mining Financial Statements

  • Siti Sakira Kamaruddin
  • Abdul Razak Hamdan
  • Azuraliza Abu Bakar
  • Fauzias Mat Nor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5589)


This paper addresses the automatic transformation of financial statements into conceptual graph interchange format (CGIF). The method mainly involves extracting relevant financial performance indicators, parsing it to obtain syntactic sentence structure and to generate the CGIF for the extracted text. The required components for the transformation are detailed out with an illustrative example. The paper also discusses the potential manipulation of the resulting CGIF for knowledge discovery and more precisely for deviation detection.


Conceptual Graph Interchange Format Deviation Detection Information Extraction Text Mining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bukh, P.N., Nielsen, C., Gormsen, P., Mouristen, J.: Disclosure of information on intellectual capital in Danish IPO prospectuses. Accounting Auditing & Accountability Journal 18, 713–732 (2005)CrossRefGoogle Scholar
  2. 2.
    Beattie, V., McInnes, B., Fearnley, S.: A Methodology for Analysing and Evaluating Narratives in Annual Reports: A Comprehensive Descriptive Profile and Metrics for Disclosure Quality Attributes. Accounting Forum 28, 205–236 (2004)CrossRefGoogle Scholar
  3. 3.
    Beattie, V., Thomson, S.J.: Lifting the lid on the use of content analysis to investigate intelectual capital disclosures. Accounting Forum 31, 129–163 (2007)CrossRefGoogle Scholar
  4. 4.
    Flostrand, P.: The sell side - observations on intellectual capital indicators. Journal of Intellectual Capital 7, 457–473 (2006)CrossRefGoogle Scholar
  5. 5.
    Qui, X.Y., Srinivasan, P., Street, N.: Exploring the Forecasting Potential of Company Annual Reports. In: American Society for Information Science and Technology (ASIS&T) Annual Meeting, Austin, Texas (2006)Google Scholar
  6. 6.
    Sydserff, R., Weetman, P.: A texture index for evaluating accounting narratives: An alternative to readability formulas. Accounting Auditing & Accountability Journal 12, 459–488 (1999)CrossRefGoogle Scholar
  7. 7.
    Kosala, R., Blockeel, H.: Web Mining Research: A Survey. ACM Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD) Explorations 2 (2000)Google Scholar
  8. 8.
    Sowa, J.F., Way, E.C.: Implementing a semantic interpreter using conceptual graphs. IBM J. Res. Develop 30, 57–69 (1986)CrossRefGoogle Scholar
  9. 9.
    Karalopoulos, A., Kokla, M., Kavouras, M.: Geographic Knowledge Representation Using Conceptual Graphs. In: 7th AGILE Conference of Geographic Information Science, Heraklion, Greece (2004)Google Scholar
  10. 10.
    Hensman, S., Dunnion, J.: Automatically Building Conceptual Graphs using VerbNet and WordNet. In: Proceedings of the 2004 international symposium on Information and communication technologies ISICT 2004(2004)Google Scholar
  11. 11.
    Hill, R., Polovina, S., Beer, M.: From Concepts to Agents: Towards a Framework for Multi-Agent System Modelling. In: Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems (AAMAS 2005), The Netherlands, pp. 1155–1156 (2005)Google Scholar
  12. 12.
    Chu, S., Cesnik, B.: Knowledge representation and retrieval using conceptual graphs and free text document self-organisation technique. International Journal of Medical Informatics 62, 121–133 (2001)CrossRefGoogle Scholar
  13. 13.
    Zhou, X., Han, H., Chankai, I., Prestrud, A., Brooks, A.: Approaches to text mining for clinical medical records. In: Proceedings of the 2006 ACM symposium on Applied computing, Dijon, France, pp. 235–239 (2006)Google Scholar
  14. 14.
    Jouve, D., Amghar, Y., Chabbat, B., Pinon, J.-M.: Conceptual framework for document semantic modelling: an application to document and knowledge management in the legal domain. Data & Knowledge Engineering 46, 345–375 (2003)CrossRefGoogle Scholar
  15. 15.
    Fürst, F., Trichet, F.: AxiomBased Ontology Matching. In: KCAP 2005, Banff, Alberta Canada (2005)Google Scholar
  16. 16.
    Jonker, C.M., Kremer, R., Leeuwen, P.V., Pan, D., Treur, J.: Mapping visual to textual knowledge representation. Knowledge-Based Systems 18 (2005)Google Scholar
  17. 17.
    Sleator, D., Temperley, D.: Parsing English with a link grammar. In: 3rd Int. Workshop of Parsing Technologies (1993)Google Scholar
  18. 18.
    Zhang, L., Yu, Y.: Learning to Generate CGs from Domain Specific Sentences. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS, vol. 2120, p. 44. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Suchanek, F.M., Ifrim, G., Weikum., G.: Combining Linguistic and Statistical Analysis to Extract Relations from Web Documents. In: SIGKDD International Conference on Knowledge Discovery and Data Mining (2006)Google Scholar
  20. 20.
    Ounis, I., Pasca, M.: A Promising Retrieval Algorithm For Systems based on the Conceptual Graphs Formalism. In: Proceedings of IDEAS 1998 (1998)Google Scholar
  21. 21.
    Montes-y-Gómez, Gelbukh, A., López-López, A.: Mining the news: trends, associations and deviations. Computación y Sistemas 5 (2001)Google Scholar
  22. 22.
    Zhong, J., Zhu, H., Li, J., Yu, Y.: Conceptual Graph Matching for Semantic Search. In: Proceedings of International Conference on Conceptual Structures (2002)Google Scholar
  23. 23.
    Montes-y-Gómez, M., Gelbukh, A., López-López, A.: Detecting Deviations in Text Collections: An Approach Using Conceptual Graphs. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS, vol. 2313, p. 176. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Siti Sakira Kamaruddin
    • 1
    • 2
  • Abdul Razak Hamdan
    • 2
  • Azuraliza Abu Bakar
    • 2
  • Fauzias Mat Nor
    • 3
  1. 1.College of Arts and ScienceUniversiti Utara MalaysiaSintokMalaysia
  2. 2.Faculty of Information Science and TechnologyUniversiti Kebangsaan MalaysiaBangi, SelangorMalaysia
  3. 3.Graduate School of BusinessUniversiti Kebangsaan MalaysiaBangi, SelangorMalaysia

Personalised recommendations