Advertisement

Does This Set of Clauses Overlap with at Least One MUS?

  • Éric Grégoire
  • Bertrand Mazure
  • Cédric Piette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5663)

Abstract

This paper is concerned with the problem of checking whether a given subset Γ of an unsatisfiable Boolean CNF formula Σ takes part in the basic causes of the inconsistency of Σ. More precisely, an original approach is introduced to check whether Γ overlaps with at least one minimally unsatisfiable subset (MUS) of Σ. In the positive case, it intends to compute and deliver one such MUS. The approach re-expresses the problem within an evolving coarser-grained framework where clusters of clauses of Σ are formed and examined according to their levels of mutual conflicts when they are interpreted as basic interacting entities. It then progressively refines the framework and the solution by splitting most promising clusters and pruning the useless ones until either some maximal preset computational resources are exhausted, or a final solution is discovered. The viability and the usefulness of the approach are illustrated through benchmarks experimentations.

Keywords

Conjunctive Normal Form Local Inconsistency Conjunctive Formula Critical Clause Promising Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Biere, A.: Boolforce, http://fmv.jku.at/booleforce
  3. 3.
    Huang, J.: MUP: A minimal unsatisfiability prover. In: ASP-DAC 2005, Shanghai, China, pp. 432–437 (2005)Google Scholar
  4. 4.
    van Maaren, H., Wieringa, S.: Finding guaranteed MUSes fast. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 291–304. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Grégoire, É., Mazure, B., Piette, C.: On approaches to explaining infeasibility of sets of Boolean clauses. In: ICTAI 2008, vol. 1, pp. 74–83 (2008)Google Scholar
  6. 6.
    Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision, updates and counterfactual. Artificial Intelligence 57, 227–270 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable Boolean formula. In: SAT 2003, Portofino, Italy (2003)Google Scholar
  8. 8.
    Grégoire, É., Mazure, B., Piette, C.: Local-search extraction of MUSes. Constraints Journal 12(3), 325–344 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Shapley, L.: A value for n-person games. Contributions to the Theory of Games II (Annals of Mathematics Studies 28), 307–317 (1953)Google Scholar
  10. 10.
    Kullmann, O., Lynce, I., Marques Silva, J.: Categorisation of clauses in conjunctive normal forms: Minimally unsatisfiable sub-clause-sets and the lean kernel. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 22–35. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Liffiton, M., Sakallah, K.: Algorithms for computing minimal unsatisfiable clause sets. Journal of Automated Reasoning 40(1), 1–33 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Grégoire, É., Mazure, B., Piette, C.: Boosting a complete technique to find MSS and MUS thanks to a local search oracle. In: IJCAI 2007, vol. 2, pp. 2300–2305. AAAI Press, Menlo Park (2007)Google Scholar
  13. 13.
    Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent sets. In: KR 2008, Sydney, Australia, pp. 358–366 (2008)Google Scholar
  14. 14.
    Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artificial Intelligence 74, 249–310 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dalal, M.: Anytime families of tractable propositional reasoners. In: AI/MATH 1996, pp. 42–45 (1996)Google Scholar
  16. 16.
    Dalal, M.: Semantics of an anytime family of reasponers. In: ECAI 1996, pp. 360–364 (1996)Google Scholar
  17. 17.
    Finger, M.: Towards polynomial approximations of full propositional logic. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 11–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Finger, M., Wassermann, R.: The universe of propositional approximations. Theoretical Computer Science 355(2), 153–166 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Koriche, F., Sallantin, J.: A logical toolbox for knowledge approximation. In: TARK 2001, pp. 193–205. Morgan Kaufmann Publishers Inc., San Francisco (2001)Google Scholar
  20. 20.
    Koriche, F.: Approximate coherence-based reasoning. Journal of Applied Non-Classical Logics 12(2), 239–258 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kullmann, O.: Investigations on autark assignments. Discrete Applied Mathematics 107, 99–137 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Liffiton, M., Sakallah, K.: Searching for autarkies to trim unsatisfiable clause sets. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 182–195. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Éric Grégoire
    • 1
  • Bertrand Mazure
    • 1
  • Cédric Piette
    • 1
  1. 1.Université Lille-Nord de France, Artois, CRIL-CNRS UMR 8188Lens CedexFrance

Personalised recommendations