A Generalization of Semenov’s Theorem to Automata over Real Numbers

  • Bernard Boigelot
  • Julien Brusten
  • Jérôme Leroux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5663)


This work studies the properties of finite automata recognizing vectors with real components, encoded positionally in a given integer numeration base. Such automata are used, in particular, as symbolic data structures for representing sets definable in the first-order theory 〈ℝ, ℤ, + , ≤ 〉, i.e., the mixed additive arithmetic of integer and real variables. They also lead to a simple decision procedure for this arithmetic.

In previous work, it has been established that the sets definable in 〈ℝ, ℤ, + , ≤ 〉 can be handled by a restricted form of infinite-word automata, weak deterministic ones, regardless of the chosen numeration base. In this paper, we address the reciprocal property, proving that the sets of vectors that are simultaneously recognizable in all bases, by either weak deterministic or Muller automata, are those definable in 〈ℝ, ℤ, + , ≤ 〉. This result can be seen as a generalization to the mixed integer and real domain of Semenov’s theorem, which characterizes the sets of integer vectors recognizable by finite automata in multiple bases. It also extends to multidimensional vectors a similar property recently established for sets of numbers.

As an additional contribution, the techniques used for obtaining our main result lead to valuable insight into the internal structure of automata recognizing sets of vectors definable in 〈ℝ, ℤ, + , ≤ 〉. This structure might be exploited in order to improve the efficiency of representation systems and decision procedures for this arithmetic.


Mixed Integer Decision Procedure Fractional Part Regular Language Integer Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus du Premier Congrès des Mathématiciens des Pays Slaves, Warsaw, pp. 92–101 (1929)Google Scholar
  2. 2.
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. International Congress on Logic, Methodoloy and Philosophy of Science, pp. 1–12. Stanford University Press, Stanford (1962)Google Scholar
  3. 3.
    Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets of integers. Bulletin of the Belgian Mathematical Society 1(2), 191–238 (1994)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Boigelot, B.: Symbolic methods for exploring infinite state spaces. PhD thesis, Université de Liège (1998)Google Scholar
  5. 5.
    Cobham, A.: On the base-dependence of sets of numbers recognizable by finite automata. Mathematical Systems Theory 3, 186–192 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Semenov, A.: Presburgerness of predicates regular in two number systems. Siberian Mathematical Journal 18, 289–299 (1977)CrossRefzbMATHGoogle Scholar
  7. 7.
    Boigelot, B., Bronne, L., Rassart, S.: An improved reachability analysis method for strongly linear hybrid systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 167–177. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    The Liège Automata-based Symbolic Handler (LASH),
  9. 9.
    Becker, B., Dax, C., Eisinger, J., Klaedtke, F.: LIRA: Handling constraints of linear arithmetics over the integers and the reals. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 307–310. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Boigelot, B., Brusten, J., Bruyère, V.: On the sets of real numbers recognized by finite automata in multiple bases. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 112–123. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear arithmetic over the integers and reals. ACM Transactions on Computational Logic 6(3), 614–633 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    van Leeuwen, J. (ed.): Handbook of Theoretical Computer Science. Formal Models and Semantics, vol. B. Elsevier and MIT Press (1990)Google Scholar
  13. 13.
    Vardi, M.: The Büchi complementation saga. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Löding, C.: Efficient minimization of deterministic weak ω-automata. Information Processing Letters 79(3), 105–109 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Boigelot, B., Rassart, S., Wolper, P.: On the expressiveness of real and integer arithmetic automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 152–163. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Perrin, D., Pin, J.: Infinite words. Pure and Applied Mathematics, vol. 141. Elsevier, Amsterdam (2004)zbMATHGoogle Scholar
  17. 17.
    Boigelot, B., Brusten, J.: A generalization of Cobham’s theorem to automata over real numbers. Theoretical Computer Science (2009) (in press)Google Scholar
  18. 18.
    Ferrante, J., Rackoff, C.: The Computational Complexity of Logical Theories. Lecture Notes in Mathematics, vol. 718. Springer, Heidelberg (1979)zbMATHGoogle Scholar
  19. 19.
    Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers, 5th edn. Oxford University Press, Oxford (1985)zbMATHGoogle Scholar
  20. 20.
    Wilke, T.: Locally threshold testable languages of infinite words. In: Enjalbert, P., Wagner, K.W., Finkel, A. (eds.) STACS 1993. LNCS, vol. 665, pp. 607–616. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  21. 21.
    Bryant, R.: Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Computing Surveys 24(3), 293–318 (1992)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Weispfenning, V.: Mixed real-integer linear quantifier elimination. In: Proc. ACM SIGSAM ISSAC, Vancouver, pp. 129–136. ACM Press, New York (1999)Google Scholar
  23. 23.
    Eisinger, J., Klaedtke, F.: Don’t care words with an application to the automata-based approach for real addition. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 67–80. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Latour, L.: Presburger arithmetic: from automata to formulas. PhD thesis, Université de Liège (2005)Google Scholar
  25. 25.
    Leroux, J.: A polynomial time Presburger criterion and synthesis for number decision diagrams. In: Proc. 20th LICS, Chicago, pp. 147–156. IEEE Computer Society, Los Alamitos (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Bernard Boigelot
    • 1
  • Julien Brusten
    • 1
  • Jérôme Leroux
    • 2
  1. 1.Institut Montefiore, B28Université de LiégeLiégeBelgium
  2. 2.Laboratoire Bordelais de Recherche en Informatique (LaBRI)Talence CedexFrance

Personalised recommendations