Advertisement

Volume Computation for Boolean Combination of Linear Arithmetic Constraints

  • Feifei Ma
  • Sheng Liu
  • Jian Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5663)

Abstract

There are many works on the satisfiability problem for various logics and constraint languages, such as SAT and Satisfiability Modulo Theories (SMT). On the other hand, the counting version of decision problems is also quite important in automated reasoning. In this paper, we study a counting version of SMT, i.e., how to compute the volume of the solution space, given a set of Boolean combinations of linear constraints. The problem generalizes the model counting problem and the volume computation problem for convex polytopes. It has potential applications to program analysis and verification, as well as approximate reasoning, yet it has received little attention. We first give a straightforward method, and then propose an improved algorithm. We also describe two ways of incorporating theory-level lemma learning technique into the algorithm. They have been implemented, and some experimental results are given. Through an example program, we show that our tool can be used to compute how often a given program path is executed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrei, S., Chin, W., Cheng, A.M.K., Lupu, M.: Automatic debugging of real-time systems based on incremental satisfiability counting. IEEE Trans. Computers 55(7), 830–842 (2006)CrossRefGoogle Scholar
  2. 2.
    Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for #SAT and Bayesian inference. In: Proceedings of the 44th Symposium on Foundations of Computer Science (FOCS 2003), pp. 340–351 (2003)Google Scholar
  3. 3.
    Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007), http://www.cs.nyu.edu/acsys/cvc3 CrossRefGoogle Scholar
  4. 4.
    Behle, M., Eisenbrand, F.: 0/1 vertex and facet enumeration with BDDs. In: Proceedings of the Workshop on Algorithm Engineering and Experiments (ALENEX 2007) (2007), http://www.mpi-inf.mpg.de/~behle/azove.html
  5. 5.
    Berkelaar, M., Eikland, K., Notebaert, P.: The lp_solve Page, http://lpsolve.sourceforge.net/
  6. 6.
    Büeler, B., Enge, A., Fukuda, K.: Exact volume computation for polytopes: a practical study. Polytopes–combinatorics and computation (1998), http://www.lix.polytechnique.fr/Labo/Andreas.Enge/Vinci.html
  7. 7.
    Buse, R.P.L., Weimer, W.R.: The road not taken: Estimating path execution frequency statically. In: Proceedings of the 31st International Conference on Software Engineering (ICSE 2009) (2009)Google Scholar
  8. 8.
    Davies, J., Bacchus, F.: Using more reasoning to improve #SAT solving. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI 2007), pp. 185–190 (2007)Google Scholar
  9. 9.
    Dutertre, B., Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006), http://yices.csl.sri.com/ CrossRefGoogle Scholar
  10. 10.
    Dyer, M., Frieze, A.: On the complexity of computing the volume of a polyhedron. SIAM J. Comput. 17(5), 967–974 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Eén, N., Sorensson, N.: The MiniSat Page, http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
  12. 12.
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Gomes, C.P., Hoffmann, J., Sabharwal, A., Selman, B.: From sampling to model counting. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 2293–2299 (2007)Google Scholar
  14. 14.
    Bayardo Jr., R.J., Pehoushek, J.D.: Counting models using connected components. In: Proceedings of the 17th National Conference on Artificial Intelligence and 12th Conference on on Innovative Applications of Artificial Intelligence (AAAI/IAAI 2000), pp. 157–162 (2000)Google Scholar
  15. 15.
    Kernighan, B.W., Ritchie, D.M.: The C Programming Language. Prentice-Hall, Englewood Cliffs (1978)zbMATHGoogle Scholar
  16. 16.
    Kroening, D., Strichman, O.: Decision Procedures — An Algorithmic Point of View. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  17. 17.
    Loera, J.A.D., Hemmeckeb, R., Tauzera, J., Yoshidab, R.: Effective lattice point counting in rational convex polytopes. Journal of Symbolic Computation 38(4), 1273–1302 (2004), http://www.math.ucdavis.edu/~latte/ MathSciNetCrossRefGoogle Scholar
  18. 18.
    Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008), http://research.microsoft.com/projects/z3/index.html CrossRefGoogle Scholar
  19. 19.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1-2), 273–302 (1996)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Samer, M., Szeider, S.: Algorithms for propositional model counting. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 484–498. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Sang, T., Beame, P., Kautz, H.A.: Heuristics for fast exact model counting. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 226–240. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Wei, W., Selman, B.: A new approach to model counting. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 324–339. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Zhang, J.: Specification analysis and test data generation by solving boolean combinations of numeric constraints. In: Proceedings of the 1st Asia-Pacific Conference on Quality Software (APAQS 2000), pp. 267–274 (2000)Google Scholar
  25. 25.
    Zhang, J.: Quantitative analysis of symbolic execution. Presented at the 28th International Computer Software and Applications Conference (COMPSAC 2004) (2004)Google Scholar
  26. 26.
    Zhang, J., Wang, X.: A constraint solver and its application to path feasibility analysis. International Journal of Software Engineering and Knowledge Engineering 11(2), 139–156 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Feifei Ma
    • 1
    • 2
  • Sheng Liu
    • 1
    • 2
  • Jian Zhang
    • 1
  1. 1.State Key Laboratory of Computer Science Institute of SoftwareChinese Academy of SciencesChina
  2. 2.Graduate University, Chinese Academy of SciencesChina

Personalised recommendations