A Tableau Calculus for Regular Grammar Logics with Converse

  • Linh Anh Nguyen
  • Andrzej Szałas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5663)


We give a sound and complete tableau calculus for deciding the general satisfiability problem of regular grammar logics with converse (REG c logics). Tableaux of our calculus are defined as “and-or” graphs with global caching. Our calculus extends the tableau calculus for regular grammar logics given by Goré and Nguyen [11] by using a cut rule and existential automaton-modal operators to deal with converse. We use it to develop an ExpTime (optimal) tableau decision procedure for the general satisfiability problem of REG c logics. We also briefly discuss optimizations for the procedure.


Description Logic Kripke Model Propositional Dynamic Logic Negation Normal Form Transitional Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica 69, 5–40 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baldoni, M., Giordano, L., Martelli, A.: A tableau for multimodal logics and some (un)decidability results. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS, vol. 1397, pp. 44–59. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    De Giacomo, G., Massacci, F.: Combining deduction and model checking into tableaux and algorithms for Converse-PDL. Information and Computation 117-137, 87–138 (2000)Google Scholar
  4. 4.
    Demri, S.: The complexity of regularity in grammar logics and related modal logics. Journal of Logic and Computation 11(6), 933–960 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Demri, S., de Nivelle, H.: Deciding regular grammar logics with converse through first-order logic. arXiv:cs.LO/0306117 (2004)Google Scholar
  6. 6.
    Demri, S., de Nivelle, H.: Deciding regular grammar logics with converse through first-order logic. Journal of Logic, Language and Information 14(3), 289–329 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Donini, F., Massacci, F.: ExpTime tableaux for \(\mathcal{ALC}\). Artificial Intelligence 124, 87–138 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fariñas del Cerro, L., Penttonen, M.: Grammar logics. Logique et Analyse 121-122, 123–134 (1988)Google Scholar
  9. 9.
    Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Synthese Library, vol. 169. D. Reidel, Dordrecht (1983)CrossRefzbMATHGoogle Scholar
  10. 10.
    Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, et al. (eds.) Handbook of Tableau Methods, pp. 297–396. Kluwer, Dordrecht (1999)CrossRefGoogle Scholar
  11. 11.
    Goré, R., Nguyen, L.A.: A tableau system with automaton-labelled formulae for regular grammar logics. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 138–152. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Goré, R., Nguyen, L.A.: ExpTime tableaux with global caching for description logics with transitive roles, inverse roles and role hierarchies. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 133–148. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Goré, R., Nguyen, L.A.: Analytic cut-free tableaux for regular modal logics of agent beliefs. In: Sadri, F., Satoh, K. (eds.) CLIMA VIII 2007. LNCS (LNAI), vol. 5056, pp. 268–287. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Goré, R., Nguyen, L.A.: Sound global caching for abstract modal tableaux. In: Burkhard, H.-D., et al. (eds.) Proceedings of CS&P 2008, pp. 157–167 (2008)Google Scholar
  15. 15.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  16. 16.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of KR 2006, pp. 57–67. AAAI Press, Menlo Park (2006)Google Scholar
  17. 17.
    Horrocks, I., Patel-Schneider, P.F.: Optimizing description logic subsumption. Journal of Logic and Computation 9(3), 267–293 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Horrocks, I., Sattler, U.: Decidability of \(\mathcal{SHIQ}\) with complex role inclusion axioms. Artificial Intelligence 160(1-2), 79–104 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mateescu, A., Salomaa, A.: Formal languages: an introduction and a synopsis. In: Handbook of Formal Languages, vol. 1, pp. 1–40. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  20. 20.
    Nguyen, L.A.: An efficient tableau prover using global caching for the description logic \(\mathcal{ALC}\). In: Proceedings of CS&P (2008) (to appear in Fundamenta Informaticae)Google Scholar
  21. 21.
    Nguyen, L.A.: Analytic tableau systems and interpolation for the modal logics KB, KDB, K5, KD5. Studia Logica 69(1), 41–57 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nguyen, L.A.: On the deterministic Horn fragment of test-free PDL. In: Hodkinson, I., Venema, Y. (eds.) Advances in Modal Logic, vol. 6, pp. 373–392. King’s College Publications (2006)Google Scholar
  23. 23.
    Nguyen, L.A.: Weakening Horn knowledge bases in regular description logics to have PTIME data complexity. In: Ghilardi, et al. (eds.) Proceedings of ADDCT 2007, pp. 32–47 (2007),
  24. 24.
    Nguyen, L.A., Szałas, A.: ExpTime tableau decision procedures for regular grammar logics with converse (2009) (manuscript),
  25. 25.
    Pratt, V.R.: A near-optimal method for reasoning about action. J. Comput. Syst. Sci. 20(2), 231–254 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Rautenberg, W.: Modal tableau calculi and interpolation. JPL 12, 403–423 (1983)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Linh Anh Nguyen
    • 1
  • Andrzej Szałas
    • 1
    • 2
  1. 1.Institute of InformaticsUniversity of WarsawWarsawPoland
  2. 2.Department of Computer and Information ScienceLinköping UniversityLinköpingSweden

Personalised recommendations