Advertisement

Termination Analysis by Dependency Pairs and Inductive Theorem Proving

  • Stephan Swiderski
  • Michael Parting
  • Jürgen Giesl
  • Carsten Fuhs
  • Peter Schneider-Kamp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5663)

Abstract

Current techniques and tools for automated termination analysis of term rewrite systems (TRSs) are already very powerful. However, they fail for algorithms whose termination is essentially due to an inductive argument. Therefore, we show how to couple the dependency pair method for TRS termination with inductive theorem proving. As confirmed by the implementation of our new approach in the tool AProVE, now TRS termination techniques are also successful on this important class of algorithms.

Keywords

Normal Form Function Symbol Termination Proof Dependency Pair Reduction Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge (1998)Google Scholar
  4. 4.
    Bouhoula, A., Rusinowitch, M.: SPIKE: A system for automatic inductive proofs. In: Alagar, V.S., Nivat, M. (eds.) AMAST 1995. LNCS, vol. 936, pp. 576–577. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  5. 5.
    Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press, London (1979)zbMATHGoogle Scholar
  6. 6.
    Brauburger, J., Giesl, J.: Termination analysis by inductive evaluation. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 254–269. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Bundy, A.: The automation of proof by mathematical induction. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, pp. 845–911. Elsevier & MIT (2001)Google Scholar
  8. 8.
    Comon, H.: Inductionless induction. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, pp. 913–962. Elsevier & MIT (2001)Google Scholar
  9. 9.
    Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: SAT solving for termination analysis with polynomial interpretations. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Giesl, J.: Termination analysis for functional programs using term orderings. In: Mycroft, A. (ed.) SAS 1995. LNCS, vol. 983, pp. 154–171. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  11. 11.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: The DP framework: Combining techniques for automated termination proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Giesl, J., Swiderski, S., Schneider-Kamp, P., Thiemann, R.: Automated termination analysis for Haskell: From term rewriting to programming languages. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 297–312. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the DP framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Giesl, J., Thiemann, R., Swiderski, S., Schneider-Kamp, P.: Proving termination by bounded increase. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 443–459. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Gnaedig, I., Kirchner, H.: Termination of rewriting under strategies. ACM Transactions on Computational Logic 10(3) (2008)Google Scholar
  17. 17.
    Gramlich, B.: Abstract relations between restricted termination and confluence properties of rewrite systems. Fundamenta Informaticae 24(1-2), 2–23 (1995)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Information and Computation 199(1-2), 172–199 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hirokawa, N., Middeldorp, A.: Tyrolean Termination Tool: Techniques and features. Information and Computation 205(4), 474–511 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kapur, D., Musser, D.R.: Proof by consistency. Artif. Int. 31(2), 125–157 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer, Dordrecht (2000)Google Scholar
  22. 22.
    Krauss, A.: Certified size-change termination. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 460–475. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Lankford, D.: On proving term rewriting systems are Noetherian. Technical Report MTP-3, Louisiana Technical University, Ruston, LA, USA (1979)Google Scholar
  24. 24.
    Lucas, S., Meseguer, J.: Order-sorted dependency pairs. In: Proc. PPDP 2008, pp. 108–119. ACM Press, New York (2008)Google Scholar
  25. 25.
    Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 401–414. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Middeldorp, A., Zantema, H.: Personal communication (2008)Google Scholar
  27. 27.
    Ohlebusch, E.: Termination of logic programs: Transformational approaches revisited. Appl. Algebra in Engineering, Comm. and Computing 12, 73–116 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Panitz, S.E., Schmidt-Schauß, M.: TEA: Automatically proving termination of programs in a non-strict higher-order functional language. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 345–360. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  29. 29.
    Plaisted, D.A.: Equational reasoning and term rewriting systems. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, Oxford, vol. 1, pp. 273–364 (1993)Google Scholar
  30. 30.
    van de Pol, J.: Modularity in many-sorted term rewriting. Master’s Thesis, Utrecht University (1992), http://homepages.cwi.nl/~vdpol/papers/
  31. 31.
    Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated termination proofs for logic programs by term rewriting. ACM Transactions on Computational Logic (to appear, 2009)Google Scholar
  32. 32.
    Walther, C.: On proving the termination of algorithms by machine. Artificial Intelligence 71(1), 101–157 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Walther, C.: Mathematical induction. In: Gabbay, D., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in AI and Logic Programming, Oxford, vol. 2, pp. 127–228 (1994)Google Scholar
  34. 34.
    Walther, C., Schweitzer, S.: About VeriFun. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 322–327. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  35. 35.
    Zantema, H.: Termination of term rewriting: Interpretation and type elimination. Journal of Symbolic Computation 17(1), 23–50 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Zhang, H., Kapur, D., Krishnamoorthy, M.S.: A mechanizable induction principle for equational specifications. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS (LNAI), vol. 310, pp. 162–181. Springer, Heidelberg (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stephan Swiderski
    • 1
  • Michael Parting
    • 1
  • Jürgen Giesl
    • 1
  • Carsten Fuhs
    • 1
  • Peter Schneider-Kamp
    • 2
  1. 1.LuFG Informatik 2RWTH Aachen UniversityGermany
  2. 2.Dept. of Mathematics & CSUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations