Advertisement

Complexity and Algorithms for Monomial and Clausal Predicate Abstraction

  • Shuvendu K. Lahiri
  • Shaz Qadeer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5663)

Abstract

In this paper, we investigate the asymptotic complexity of various predicate abstraction problems relative to the asymptotic complexity of checking an annotated program in a given assertion logic. Unlike previous approaches, we pose the predicate abstraction problem as a decision problem, instead of the traditional inference problem. For assertion logics closed under weakest (liberal) precondition and Boolean connectives, we show two restrictions of the predicate abstraction problem where the two complexities match. The restrictions correspond to the case of monomial and clausal abstraction. For these restrictions, we show a symbolic encoding that reduces the predicate abstraction problem to checking the satisfiability of a single formula whose size is polynomial in the size of the program and the set of predicates. We also provide a new iterative algorithm for solving the clausal abstraction problem that can be seen as the dual of the Houdini algorithm for solving the monomial abstraction problem.

Keywords

Decision Problem Abstract Interpretation Abstract Domain Proof Sketch Predicate Abstraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate abstraction of C programs. In: Programming Language Design and Implementation (PLDI 2001), pp. 203–213 (2001)Google Scholar
  2. 2.
    Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: Program Analysis For Software Tools and Engineering (PASTE 2005), pp. 82–87 (2005)Google Scholar
  3. 3.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Condit, J., Hackett, B., Lahiri, S.K., Qadeer, S.: Unifying type checking and property checking for low-level code. In: Principles of Programming Languages (POPL 2009), pp. 302–314 (2009)Google Scholar
  5. 5.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for the static analysis of programs by construction or approximation of fixpoints. In: Principles of Programming Languages (POPL 1977), pp. 238–252 (1977)Google Scholar
  6. 6.
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Principles of Programming Languages (POPL 1978), pp. 84–96 (1978)Google Scholar
  7. 7.
    Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based invariant inference over predicate abstraction. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 120–135. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: Principles of Programming Languages (POPL), pp. 232–244 (2004)Google Scholar
  11. 11.
    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Principles of Programming Languages (POPL 2002), pp. 58–70 (2002)Google Scholar
  12. 12.
    Jain, H., Kroening, D., Sharygina, N., Clarke, E.M.: Word level predicate abstraction and refinement for verifying rtl verilog. In: Design Automation Conference (DAC 2005), pp. 445–450. ACM, New York (2005)CrossRefGoogle Scholar
  13. 13.
    Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach. Princeton University Press, Princeton (1995)CrossRefzbMATHGoogle Scholar
  14. 14.
    Lahiri, S.K., Bryant, R.E.: Constructing quantified invariants via predicate abstraction. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 267–281. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Lahiri, S.K., Qadeer, S.: Back to the future: Revisiting precise program verification using SMT solvers. In: Principles of Programming Languages (POPL 2008), pp. 171–182 (2008)Google Scholar
  16. 16.
    Lahiri, S.K., Qadeer, S., Galeotti, J.P., Voung, J.W., Wies, T.: Intra-module inference. In: Computer-Aided Verification (CAV 2009) (July 2009)Google Scholar
  17. 17.
    Sagiv, S., Reps, T.W., Wilhelm, R.: Solving shape-analysis problems in languages with destructive updating. ACM Transactions on Programming Languages and Systems (TOPLAS) 20(1), 1–50 (1998)CrossRefGoogle Scholar
  18. 18.
    Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 25–41. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Satisfiability Modulo Theories Library (SMT-LIB), http://goedel.cs.uiowa.edu/smtlib/
  21. 21.
    Solar-Lezama, A., Rabbah, R.M., Bodík, R., Ebcioglu, K.: Programming by sketching for bit-streaming programs. In: Programming Language Design and Implementation (PLDI 2005), pp. 281–294. ACM, New York (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Shuvendu K. Lahiri
    • 1
  • Shaz Qadeer
    • 1
  1. 1.Microsoft ResearchUSA

Personalised recommendations