Advertisement

Ground Interpolation for Combined Theories

  • Amit Goel
  • Sava Krstić
  • Cesare Tinelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5663)

Abstract

We give a method for modular generation of ground interpolants in modern SMT solvers supporting multiple theories. Our method uses a novel algorithm to modify the proof tree obtained from an unsatifiability run of the solver into a proof tree without occurrences of troublesome “uncolorable” literals. An interpolant can then be readily generated using existing procedures. The principal advantage of our method is that it places few restrictions (none for convex theories) on the search strategy of the solver. Consequently, it is straightforward to implement and enables more efficient interpolating SMT solvers. In the presence of non-convex theories our method is incomplete, but still more general than previous methods.

Keywords

Critical Node Proof Tree Basic Transformation Combine Theory Theory Solver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, P.B.: Resolution with merging. J. ACM 15(3), 367–381 (1968)CrossRefzbMATHGoogle Scholar
  2. 2.
    Barrett, C., et al.: Satisfiability Modulo Theories. In: Biere, A., et al. (eds.) Handbook of Satisfiability, pp. 825–885. IOS Press, Amsterdam (2009)Google Scholar
  3. 3.
    Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: Interpolation for LA+EUF. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 304–308. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bozzano, M., et al.: Efficient theory combination via Boolean search. Information and Computation 204(10), 1493–1525 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Büning, H.K., Lettmann, T.: Propositional Logic: Deduction and Algorithms. Cambridge University Press, New York (1999)zbMATHGoogle Scholar
  6. 6.
    Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolant generation in Satisfiability Modulo Theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 397–412. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    de Moura, L., Bjørner, N.: Model-based theory combination. ENTCS 198, 37–49 (2008)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Fuchs, A., et al.: Ground interpolation for the theory of equality. In: TACAS. LNCS, vol. 5505, pp. 413–427. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Henzinger, T.A., et al.: Abstractions from proofs. In: POPL, pp. 232–244. ACM, New York (2004)Google Scholar
  11. 11.
    Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 39–51. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Krstić, S., Goel, A.: Architecting solvers for SAT Modulo Theories: Nelson-Oppen with DPLL. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS, vol. 4720, pp. 1–27. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    McMillan, K.L.: An interpolating theorem prover. Theoretical Computer Science 345(1), 101–121 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL modulo theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS, vol. 3452, pp. 36–50. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 353–368. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Amit Goel
    • 1
  • Sava Krstić
    • 1
  • Cesare Tinelli
    • 2
  1. 1.Strategic CAD LabsIntel CorporationUSA
  2. 2.Department of Computer ScienceThe University of IowaUSA

Personalised recommendations