Advertisement

Instantiation-Based Automated Reasoning: From Theory to Practice

  • Konstantin Korovin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5663)

Abstract

Instantiation-based automated reasoning aims at combining the efficiency of propositional SAT and SMT technologies with the expressiveness of first-order logic. Propositional SAT and SMT solvers are probably the most successful reasoners applied to real-world problems, due to extremely efficient propositional methods and optimized implementations. However, the expressiveness of first-order logic is essential in many applications ranging from formal verification of software and hardware to knowledge representation and querying. Therefore, there is a growing demand to integrate efficient propositional and more generally ground reasoning modulo theories into first-order reasoning.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models by reduction to function-free clause logic. In: Third Workshop on Disproving - Non-Theorems, Non-Validity, Non-Provability (DISPROVING 2006) (July 2006)Google Scholar
  3. 3.
    Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. International Journal on Artificial Intelligence Tools 15(1), 21–52 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Baumgartner, P., Fuchs, A., Tinelli, C.: ME(LIA) – Model evolution with linear integer arithmetic constraints. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS, vol. 5330, pp. 258–273. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Baumgartner, P., Schmidt, R.A.: Blocking and other enhancements for bottom-up model generation methods. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 125–139. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Baumgartner, P., Tinelli, C.: The model evolution calculus. In: Baader, F. (ed.) CADE 2003. LNCS, vol. 2741, pp. 350–364. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Baumgartner, P., Tinelli, C.: The model evolution calculus with equality. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 392–408. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Billon, J.-P.: The disconnection method: a confluent integration of unification in the analytic framework. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS (LNAI), vol. 1071, pp. 110–126. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  9. 9.
    Claessen, K., Sörensson, N.: New techniques that improve MACE-style model finding. In: Proc. of Workshop on Model Computation (MODEL) (2003)Google Scholar
  10. 10.
    de Moura, L.M., Bjørner, N.: Deciding effectively propositional logic using DPLL and substitution sets. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 410–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Eiter, T., Faber, W., Traxler, P.: Testing strong equivalence of datalog programs - implementation and examples. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS, vol. 3662, pp. 437–441. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded fragment with equality. In: Proc. of LICS 1999, pp. 295–304 (1999)Google Scholar
  15. 15.
    Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: Proc. 18th IEEE Symposium on LICS, pp. 55–64. IEEE, Los Alamitos (2003)Google Scholar
  16. 16.
    Ganzinger, H., Korovin, K.: Integrating equational reasoning into instantiation-based theorem proving. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 71–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Ganzinger, H., Korovin, K.: Theory Instantiation. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS, vol. 4246, pp. 497–511. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Hooker, J.N., Rago, G., Chandru, V., Shrivastava, A.: Partial instantiation methods for inference in first order logic. J. Autom. Reasoning 28, 371–396 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-description logic to disjunctive datalog programs. In: The Ninth International Conference on Principles of Knowledge Representation and Reasoning, pp. 152–162. AAAI Press, Menlo Park (2004)Google Scholar
  20. 20.
    Kazakov, Y., Motik, B.: A resolution-based decision procedure for SHOIQ. J. Autom. Reasoning 40(2-3), 89–116 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Korovin, K.: An invitation to instantiation-based reasoning: a modular approach. In: Podelski, A., Voronkov, A., Wilhelm, R. (eds.) Volume in memoriam of Harald Ganzinger. Springer, Heidelberg (2006) (invited paper) (to appear)Google Scholar
  22. 22.
    Korovin, K.: iProver - an instantiation-based theorem prover for first-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 292–298. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Lee, S.-J., Plaisted, D.: Eliminating duplication with the Hyper-linking strategy. J. Autom. Reasoning 9, 25–42 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Letz, R., Stenz, G.: Proof and model generation with disconnection tableaux. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 142–156. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Letz, R., Stenz, G.: Integration of equality reasoning into the disconnection calculus. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS, vol. 2381, pp. 176–190. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Pease, A., Sutcliffe, G., Siegel, N., Trac, S.: The annual SUMO reasoning prizes at CASC. In: The First International Workshop on Practical Aspects of Automated Reasoning. CEUR Workshop Proceedings, vol. 373 (2008)Google Scholar
  27. 27.
    Pérez, J.A.N.: Encoding and Solving Problems in Effectively Propositional Logic. PhD thesis, University of Manchester (2007)Google Scholar
  28. 28.
    Pérez, J.A.N., Voronkov, A.: Encodings of bounded LTL model checking in effectively propositional logic. In: Pfenning, F. (ed.) CADE 2007. LNCS, vol. 4603, pp. 346–361. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Pérez, J.A.N., Voronkov, A.: Proof systems for effectively propositional logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 426–440. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  30. 30.
    Pérez, J.A.N., Voronkov, A.: Planning with effectively propositional logic. In: Podelski, A., Voronkov, A., Wilhelm, R. (eds.) Volume in memoriam of Harald Ganzinger. Springer, Heidelberg (to appear) (invited paper)Google Scholar
  31. 31.
    Plaisted, D., Zhu, Y.: Ordered semantic hyper-linking. J. Autom. Reasoning 25(3), 167–217 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Schmidt, R.A., Hustadt, U.: First-order resolution methods for modal logics. In: Podelski, A., Voronkov, A., Wilhelm, R. (eds.) Volume in memoriam of Harald Ganzinger. LNCS. Springer, Heidelberg (2006) (invited overview paper) (to appear)Google Scholar
  33. 33.
    Stenz, G.: DCTP 1.2 - system abstract. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS, vol. 2381, pp. 335–340. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  34. 34.
    Sutcliffe, G.: The 4th IJCAR automated theorem proving system competition - CASC-J4. AI Communications 22(1), 59–72 (2009)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Konstantin Korovin
    • 1
  1. 1.University of ManchesterUK

Personalised recommendations