Divvy: An ATP Meta-system Based on Axiom Relevance Ordering

  • Alex Roederer
  • Yury Puzis
  • Geoff Sutcliffe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5663)


This paper describes two syntactic relevance orderings on the axioms available for proving a given conjecture, and an ATP meta-system that uses the orderings to select axioms to use in proof attempts. The system has been evaluated, and the results show that it is effective.


Latent Semantic Analysis Automate Reasoning Automate Theorem Prove Relationship Strength Large Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barker-Plummer, D.: Gazing: An Approach to the Problem of Definition and Lemma Use. Journal of Automated Reasoning 8(3), 311–344 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Claessen, K., Sorensson, N.: New Techniques that Improve MACE-style Finite Model Finding. In: Baumgartner, P., Fermueller, C. (eds.) Proceedings of the Workshop on Model Computation - Principles, Algorithms, Applications (2003)Google Scholar
  3. 3.
    Deerwester, S., Dumais, S., Furnas, G., Landauer, K., Harschman, R.: Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  4. 4.
    Jaccard, P.: Étude Comparative de la Distribution Florale Dans une Portion des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)Google Scholar
  5. 5.
    Meng, J., Paulson, L.: Lightweight Relevance Filtering for Machine-Generated Resolution Problems. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) Proceedings of the FLoC 2006 Workshop on Empirically Successful Computerized Reasoning. CEUR Workshop Proceedings, vol. 192, pp. 53–69 (2006)Google Scholar
  6. 6.
    Plaisted, D.A., Yahya, A.: A Relevance Restriction Strategy for Automated Deduction. Artificial Intelligence 144(1-2), 59–93 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Pudlak, P.: Semantic Selection of Premisses for Automated Theorem Proving. In: Urban, J., Sutcliffe, G., Schulz, S. (eds.) Proceedings of the CADE-21 Workshop on Empirically Successful Automated Reasoning in Large Theories. CEUR Workshop Proceedings, vol. 257, pp. 27–44 (2007)Google Scholar
  8. 8.
    Schulz, S.: E: A Brainiac Theorem Prover. AI Communications 15(2-3), 111–126 (2002)zbMATHGoogle Scholar
  9. 9.
    Sutcliffe, G.: The SZS Ontologies for Automated Reasoning Software. In: Sutcliffe, G., Rudnicki, P., Schmidt, R., Konev, B., Schulz, S. (eds.) Proceedings of the Workshop or Knowledge Exchange: Automated Provers and Proof Assistants. CEUR Workshop Proceedings, vol. 418, pp. 38–49 (2008)Google Scholar
  10. 10.
    Sutcliffe, G., Dvorsky, A.: Proving Harder Theorems by Axiom Reduction. In: Russell, I., Haller, S. (eds.) Proceedings of the 16th International FLAIRS Conference, pp. 108–112. AAAI Press, Menlo Park (2003)Google Scholar
  11. 11.
    Urban, J., Sutcliffe, G., Pudlak, P., Vyskocil, J.: MaLARea SG1: Machine Learner for Automated Reasoning with Semantic Guidance. In: Baumgartner, P., Armando, A., Gilles, D. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 441–456. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alex Roederer
    • 1
  • Yury Puzis
    • 1
  • Geoff Sutcliffe
    • 1
  1. 1.University of MiamiUSA

Personalised recommendations