Skip to main content

Incompressibility through Colors and IDs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5555))

Abstract

In parameterized complexity each problem instance comes with a parameter k, and a parameterized problem is said to admit a polynomial kernel if there are polynomial time preprocessing rules that reduce the input instance to an instance with size polynomial in k. Many problems have been shown to admit polynomial kernels, but it is only recently that a framework for showing the non-existence of polynomial kernels has been developed by Bodlaender et al. [4] and Fortnow and Santhanam [9]. In this paper we show how to combine these results with combinatorial reductions which use colors and IDs in order to prove kernelization lower bounds for a variety of basic problems:

  • We show that the Steiner Tree problem parameterized by the number of terminals and solution size k, and the Connected Vertex Cover and Capacitated Vertex Cover problems do not admit a polynomial kernel. The two latter results are surprising because the closely related Vertex Cover problem admits a kernel of size 2k.

  • Alon and Gutner obtain a k poly(h) kernel for Dominating Set in H -Minor Free Graphs parameterized by h = |H| and solution size k and ask whether kernels of smaller size exist [2]. We partially resolve this question by showing that Dominating Set in H -Minor Free Graphs does not admit a kernel with size polynomial in k + h.

  • Harnik and Naor obtain a “compression algorithm” for the Sparse Subset Sum problem [13]. We show that their algorithm is essentially optimal since the instances cannot be compressed further.

  • Hitting Set and Set Cover admit a kernel of size k O(d) when parameterized by solution size k and maximum set size d. We show that neither of them, along with the Unique Coverage and Bounded Rank Disjoint Sets problems, admits a polynomial kernel.

All results are under the assumption that the polynomial hierarchy does not collapse to the third level. The existence of polynomial kernels for several of the problems mentioned above were open problems explicitly stated in the literature [2,3,11,12,14]. Many of our results also rule out the existence of compression algorithms, a notion similar to kernelization defined by Harnik and Naor [13], for the problems in question.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Khzam, F.N.: Kernelization algorithms for d-hitting set problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 434–445. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Alon, N., Gutner, S.: Kernels for the dominating set problem on graphs with an excluded minor. Technical Report TR08-066, Electronic Colloquium on Computational Complexity (ECCC) (2008)

    Google Scholar 

  3. Betzler, N.: Steiner tree problems in the analysis of biological networks. Diploma thesis, Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany (2006)

    Google Scholar 

  4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels (Extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Bodlaender, H.L., Thomassé, S., Yeo, A.: Analysis of data reduction: Transformations give evidence for non-existence of polynomial kernels. Technical Report UU-CS-2008-030, Institute of Information and Computing Sciences, Utrecht University, Netherlands (2008)

    Google Scholar 

  6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  7. Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.: Kernel(s) for problems with no kernel: On out-trees with many leaves. In: Proc. 26th STACS (to appear)

    Google Scholar 

  8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  9. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: Proc. 40th STOC, pp. 133–142. ACM Press, New York (2008)

    Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  11. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)

    Article  Google Scholar 

  12. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of Vertex Cover variants. Theory Comput. Syst. 41(3), 501–520 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic applications. In: Proc. 47th FOCS, pp. 719–728. IEEE, Los Alamitos (2007)

    Google Scholar 

  14. Moser, H., Raman, V., Sikdar, S.: The parameterized complexity of the unique coverage problem. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 621–631. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dom, M., Lokshtanov, D., Saurabh, S. (2009). Incompressibility through Colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds) Automata, Languages and Programming. ICALP 2009. Lecture Notes in Computer Science, vol 5555. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02927-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02927-1_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02926-4

  • Online ISBN: 978-3-642-02927-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics