Advertisement

An Omnidirectional Camera Simulation for the USARSim World

  • Tijn Schmits
  • Arnoud Visser
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5399)

Abstract

Omnidirectional vision is currently an important sensor in robotic research. The catadioptric omnidirectional camera with a hyperbolic convex mirror is a common omnidirectional vision system in the robotics research field as it has many advantages over other vision systems. This paper describes the development and validation of such a system for the RoboCup Rescue League simulator USARSim.

After an introduction of the mathematical properties of a real catadioptric omnidirectional camera we give a general overview of the simulation method. We then compare different 3D mirror meshes with respect to quality and system performance. Simulation data also is compared to real omnidirectional vision data obtained on an 4-Legged League soccer field. Comparison is based on using color histogram landmark detection and robot self-localization based on an Extended Kalman filter.

Keywords

RoboCup USARSim Omnidirectional Vision Simulation  Catadioptric Omnidirectional Camera Landmark Detection Kalman Filter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, S., Nayar, S.K.: A theory of single-viewpoint catadioptric image formation. International Journal of Computer Vision 35, 1–22 (1999)CrossRefGoogle Scholar
  2. 2.
    Gaspar, J., Winters, N., Santos-Victor, J.: Vision-based navigation and environmental representations with an omnidirectional camera. IEEE Transactions on Robotics and Automation 16, 890–898 (2000)CrossRefGoogle Scholar
  3. 3.
    Bunschoten, R., Kröse, B.: Robust scene reconstruction from an omnidirectional vision system. IEEETransactions on Robotics and Automation 19, 351–357 (2003)CrossRefGoogle Scholar
  4. 4.
    Booij, O., Terwijn, B., Zivkovic, Z., Kröse, B.: Navigation using an appearance based topological map. In: Proceedings of the International Conference on Robotics and Automation ICRA 2007, Roma, Italy, pp. 3927–3932 (2007)Google Scholar
  5. 5.
    Heinemann, P., Haass, J., Zell, A.: A combined monte-carlo localization and tracking algorithm for robocup. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2006), pp. 1535–1540 (2006)Google Scholar
  6. 6.
    Lima, P., Bonarini, A., Machado, C., Marchese, F.M., Marques, C., Ribeiro, F., Sorrenti, D.G.: Omnidirectional catadioptric vision for soccer robots. Journal of Robotics and Autonomous Systems 36, 87–102 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Bridging the Gap Between Simulation and Reality in Urban Search and Rescue. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS, vol. 4434, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Jacoff, A., Messina, E., Evans, J.: A standard test course for urban search and rescue robots. In: Proceedings of the Performance Metrics for Intelligent Systems Workshop, pp. 253–259 (2000)Google Scholar
  9. 9.
    Geyer, C., Daniilidis, K.: Catadioptric projective geometry. International Journal of Computer Vision 45, 223–243 (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Grassi Jr., V., Okamoto Jr., J.: Development of an omnidirectional vision system. Journal of the Brazilian Society of Mechanical Sciences and Engineering 28, 58–68 (2006)CrossRefGoogle Scholar
  11. 11.
    Beck, D., Ferrein, A., Lakemeyer, G.: A simulation environment for middle-size robots with multi-level abstraction. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup 2007: Robot Soccer World Cup XI. LNCS (LNAI), vol. 5001, pp. 136–147. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Nayar, S.K.: Catadioptric Omnidirectional Camera. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 482–488 (1997)Google Scholar
  13. 13.
    Zaratti, M., Fratarcangeli, M., Iocchi, L.: A 3D Simulator of Multiple Legged Robots Based on USARSim. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS, vol. 4434, pp. 13–24. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Fukunaga, K.: Introduction to statistical pattern recognition, 2nd edn. Academic Press Professional, Inc., San Diego (1990)zbMATHGoogle Scholar
  15. 15.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Inc., Cambridge (2005)zbMATHGoogle Scholar
  16. 16.
    Kristensen, S., Jensfelt, P.: An Experimental Comparison of Localisation Methods, the MHL Sessions. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), pp. 992–997 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tijn Schmits
    • 1
  • Arnoud Visser
    • 1
  1. 1.Universiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations