Advertisement

Development of an Augmented Environment and Autonomous Learning for Quadruped Robots

  • Hayato Kobayashi
  • Tsugutoyo Osaki
  • Tetsuro Okuyama
  • Akira Ishino
  • Ayumi Shinohara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5399)

Abstract

This paper describes an interactive experimental environment for autonomous soccer robots, which is a soccer field augmented by utilizing camera input and projector output. This environment, in a sense, plays an intermediate role between simulated environments and real environments. We can simulate some parts of real environments, e.g., real objects such as robots or a ball, and reflect simulated data into the real environments, e.g., to visualize the positions on the field, so as to create a situation that allows easy debugging of robot programs. As an application in the augmented environment, we address the learning of goalie strategies on real quadruped robots in penalty kicks. Our robots learn and acquire sophisticated strategies in a fully simulated environment, and then they autonomously adapt to real environments in the augmented environment.

References

  1. 1.
    Zagal, J.C., del Solar, J.R.: UCHILSIM: A Dynamically and Visually Realistic Simulator for the RoboCup Four Legged League. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 34–45. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Laue, T., Spiess, K., Röfer, T.: SimRobot - A General Physical Robot Simulator and Its Application in RoboCup. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 173–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Zaratti, M., Fratarcangeli, M., Iocchi, L.: A 3D Simulator of Multiple Legged Robots based on USARSim. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434, pp. 13–24. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Microsoft: Microsoft Robotics Studio (2007), http://msdn.microsoft.com/robotics/
  5. 5.
    Takeshita, K., Okuzumi, T., Kase, S., Hasegawa, Y., Mitsumoto, H., Ueda, R., Umeda, K., Osumi, H., Arai, T.: Technical Report of Team ARAIBO. Technical report, ARAIBO (2007), http://araibo.is-a-geek.com/
  6. 6.
    Sugimoto, M., Kagotani, G., Kojima, M., Nii, H., Nakamura, A., Inami, M.: Augmented coliseum: display-based computing for augmented reality inspiration computing robot. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Emerging technologies, p. 1. ACM, New York (2005)CrossRefGoogle Scholar
  7. 7.
    da Silva Guerra, R., Boedecker, J., Mayer, N., Yanagimachi, S., Hirosawa, Y., Yoshikawa, K., Namekawa, M., Asada, M.: CITIZEN Eco-Be! League: bringing new flexibility for research and education to RoboCup. In: Proceedings of the Meeting of Special Interest Group on AI Challenges, vol. 23, pp. 13–18 (2006)Google Scholar
  8. 8.
    Kobayashi, H., Osaki, T., Williams, E., Ishino, A., Shinohara, A.: Autonomous Learning of Ball Trapping in the Four-legged Robot League. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434, pp. 86–97. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Piccardi, M.: Background subtraction techniques: a review. In: IEEE International Conference on Systems, Man and Cybernetics 2004, vol. 4, pp. 3099–3104 (2004)Google Scholar
  10. 10.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hayato Kobayashi
    • 1
  • Tsugutoyo Osaki
    • 1
  • Tetsuro Okuyama
    • 1
  • Akira Ishino
    • 1
  • Ayumi Shinohara
    • 1
  1. 1.Graduate School of Information ScienceTohoku UniversityJapan

Personalised recommendations