Skip to main content

On Pole Assignment and Stabilizability of Neutral Type Systems

  • Chapter

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 388))

Summary

In this note we present a systematic approach to the stabilizability problem of linear infinite-dimensional dynamical systems whose infinitesimal generator has an infinite number of instable eigenvalues. We are interested in strong non-exponential stabilizability by a linear feed-back control. The study is based on our recent results on the Riesz basis property and a careful selection of the control laws which preserve this property. The investigation may be applied to wave equations and neutral type delay equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brumley, W.E.: On the asymptotic behavior of solutions of differential-difference equations of neutral type. J. Differential Equations 7, 175–188 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  2. Burns, J.A., Herdman, T.L., Stech, H.W.: Linear functional-differential equations as semigroups on product spaces. SIAM J. Math. Anal. 14(1), 98–116 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Curtain, R.F., Zwart, H.: An introduction to infinite-dimensional linear systems theory. Springer, New York (1995)

    MATH  Google Scholar 

  4. Dusser, X., Rabah, R.: On exponential stabilizability of linear neutral systems. Math. Probl. Eng. 7(1), 67–86 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Loiseau, J.J., Cardelli, M., Dusser, X.: Neutral-type time-delay systems that are not formally stable are not BIBO stabilizable. Special issue on analysis and design of delay and propagation systems. IMA J. Math. Control Inform. 19(1-2), 217–227 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hale, J.K., Verduyn Lunel, S.M.: Theory of functional differential equations. Springer, New York (1993)

    Google Scholar 

  7. Hale, J.K., Verduyn Lunel, S.M.: Strong stabilization of neutral functional differential equations. IMA Journal of Mathematical Control and Information 19(1-2), 5–23 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kato, T.: Perturbation theory for linear operators. Springer, Heidelberg (1980)

    MATH  Google Scholar 

  9. Korobov, V.I., Sklyar, G.M.: Strong stabilizability of contractive systems in Hilbert space. Differentsial’nye Uravn. 20, 1862–1869 (1984)

    MathSciNet  Google Scholar 

  10. Verduyn Lunel, S.M., Yakubovich, D.V.: A functional model approach to linear neutral functional differential equations. Integral Equa. Oper. Theory 27, 347–378 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nefedov, S.A., Sholokhovich, F.A.: A criterion for stabilizability of dynamic systems with finite-dimensional input. Differentsial’nye Uravneniya 22(2), 223–228 (1986) (Russian); English translation in the same journal edited by Plenum, New York pp. 163–166

    MathSciNet  Google Scholar 

  12. O’Connor, D.A., Tarn, T.J.: On stabilization by state feedback for neutral differential equations. IEEE Transactions on Automatic Control 28(5), 615–618 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pandolfi, L.: Stabilization of neutral functional differential equations. J. Optimization Theory and Appl. 20(2), 191–204 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rabah, R., Karrakchou, J.: On exact controllablity and complete stabilizability for linear systems in Hilbert spaces. Applied Mathematics Letters 10(1), 35–40 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rabah, R., Sklyar, G.M.: The analysis of exact controllability of neutral type systems by the moment problem approach. SIAM J. Control and Optimization 46(6), 2148–2181 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rabah, R., Sklyar, G.M., Rezounenko, A.V.: Generalized Riesz basis property in the analysis of neutral type systems. C. R. Math. Acad. Sci. Paris 337(1), 19–24 (2003)

    MATH  MathSciNet  Google Scholar 

  17. Rabah, R., Sklyar, G.M., Rezounenko, A.V.: On strong stability and stabilizability of systems of neutral type. In: Advances in time-delay systems. LNCSE, vol. 38, pp. 257–268. Springer, Heidelberg (2004)

    Google Scholar 

  18. Rabah, R., Sklyar, G.M., Rezounenko, A.V.: Stability analysis of neutral type systems in Hilbert space. J. Differential Equations 214(2), 391–428 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rabah, R., Sklyar, G.M., Rezounenko, A.V.: On strong regular stabilizability for linear neutral type systems. J. Differential Equations 245(3), 569–593 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sklyar, G.M.: The problem of the perturbation of an element of a Banach algebra by a right ideal and its application to the question of the stabilization of linear systems in Banach spaces, vol. 230, pp. 32–35. Vestn. Khar’kov. Univ. (1982) (Russian)

    Google Scholar 

  21. Sklyar, G., Rezounenko, A.: A theorem on the strong asymptotic stability and determination of stabilizing control. C.R. Acad. Sci. Paris, Ser. I. 333, 807–812 (2001)

    MATH  MathSciNet  Google Scholar 

  22. Sklyar, G.M., Rezounenko, A.V.: Strong asymptotic stability and constructing of stabilizing controls. Mat. Fiz. Anal. Geom. 10(4), 569–582 (2003)

    MATH  MathSciNet  Google Scholar 

  23. Sklyar, G.M., Ya, S.V.: On Asymptotic Stability of Linear Differential Equation in Banach Space. Teor, Funk. Funkt. Analiz. Prilozh. 37, 127–132 (1982)

    MATH  Google Scholar 

  24. Slemrod, M.: A note on complete controllability and stabilizability for linear control systems in Hilbert space. SIAM J. Control 12, 500–508 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  25. van Neerven, J.: The asymptotic behaviour of semigroups of linear operators. In: Operator Theory: Advances and Applications, p. 88. Birkhäuser, Basel (1996)

    Google Scholar 

  26. Wonham, W.M.: Linear multivariable control. A geometric approach, 3rd edn. Springer, New York (1985)

    MATH  Google Scholar 

  27. Zabczyk, J.: Mathematical Control Theory: an introduction. Birkäuser, Boston (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rabah, R., Sklyar, G.M., Rezounenko, A.V. (2009). On Pole Assignment and Stabilizability of Neutral Type Systems. In: Loiseau, J.J., Michiels, W., Niculescu, SI., Sipahi, R. (eds) Topics in Time Delay Systems. Lecture Notes in Control and Information Sciences, vol 388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02897-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02897-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02896-0

  • Online ISBN: 978-3-642-02897-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics