Skip to main content

Strongly Chordal and Chordal Bipartite Graphs Are Sandwich Monotone

  • Conference paper
  • 977 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5609))

Abstract

A graph class is sandwich monotone if, for every pair of its graphs G 1 = (V,E 1) and G 2 = (V,E 2) with E 1 ⊂ E 2, there is an ordering e 1, ..., e k of the edges in E 2 ∖ E 1 such that G = (V, E 1 ∪ {e 1, ..., e i }) belongs to the class for every i between 1 and k. In this paper we show that strongly chordal graphs and chordal bipartite graphs are sandwich monotone, answering an open question by Bakonyi and Bono from 1997. So far, very few classes have been proved to be sandwich monotone, and the most famous of these are chordal graphs. Sandwich monotonicity of a graph class implies that minimal completions of arbitrary graphs into that class can be recognized and computed in polynomial time. For minimal completions into strongly chordal or chordal bipartite graphs no polynomial-time algorithm has been known. With our results such algorithms follow for both classes. In addition, from our results it follows that all strongly chordal graphs and all chordal bipartite graphs with edge constraints can be listed efficiently.

This work is supported by the Research Council of Norway and National Security Agency, USA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Shapira, A.: Every monotone graph property is testable. In: STOC 2005, pp. 128–137 (2005)

    Google Scholar 

  2. Bakonyi, M., Bono, A.: Several results on chordal bipartite graphs. Czechoslovak Math. J. 46, 577–583 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balogh, J., Bolobás, B., Weinreich, D.: Measures on monotone properties of graphs. Disc. Appl. Math. 116, 17–36 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burzyn, P., Bonomo, F., Duran, G.: NP-completeness results for edge modification problems. Discrete Applied Math. 99, 367–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. Discrete Math. 306, 337–350 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31, 212–232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dahlhaus, E.: Chordale graphen im besonderen hinblick auf parallele algorithmen, Habilitation thesis, Universität Bonn (1991)

    Google Scholar 

  8. Farber, M.: Characterizations on strongly chordal graphs. Discrete Mathematics 43, 173–189 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Figueiredo, C.M.H., Faria, L., Klein, S., Sritharan, R.: On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs. Theoretical Computer Science 381, 57–67 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and minimum fill-in. SIAM J. Computing 38, 1058–1079 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against physical mapping of DNA. J. Comput. Bio. 2(1), 139–152 (1995)

    Article  Google Scholar 

  12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Annals of Discrete Mathematics, vol. 57. Elsevier, Amsterdam (2004)

    Google Scholar 

  13. Heggernes, P., Mancini, F.: Minimal split completions. Discrete Applied Mathematics (in print); also In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 592–604. Springer, Heidelberg (2006)

    Google Scholar 

  14. Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Characterizing minimal interval completions: Towards better understanding of profile and pathwidth. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 236–247. Springer, Heidelberg (2007)

    Google Scholar 

  15. Heggernes, P., Papadopoulos, C.: Single-Edge Monotonic Sequences of Graphs and Linear-Time Algorithms for Minimal Completions and Deletions. Theoretical Computer Science 410, 1–15 (2009); also In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 406–416. Springer, Heidelberg (2007)

    Google Scholar 

  16. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28, 1906–1922 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kijima, S., Kiyomi, M., Okamoto, Y., Uno, T.: On listing, sampling, and counting the chordal graphs with edge constraints. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 458–467. Springer, Heidelberg (2008)

    Google Scholar 

  18. Lokshtanov, D., Mancini, F., Papadopoulos, C.: Characterizing and Computing Minimal Cograph Completions. In: Preparata, F.P., Wu, X., Yin, J. (eds.) FAW 2008. LNCS, vol. 5059, pp. 147–158. Springer, Heidelberg (2008)

    Google Scholar 

  19. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Disc. Appl. Math. 113, 109–128 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16, 973–989 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rose, D.: Triangulated graphs and the elimination process. J. Math. Anal. Appl. 32, 597–609 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In: Read, R.C. (ed.) Graph Theory and Computing, pp. 183–217. Academic Press, New York (1972)

    Google Scholar 

  23. Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sritharan, R.: Chordal bipartite completion of colored graphs. Discrete Mathematics 308, 2581–2588 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Spinrad, J.P.: Doubly lexical ordering of dense 0-1 matrices. Information Processing Letters 45, 229–235 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth. 2, 77–79 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heggernes, P., Mancini, F., Papadopoulos, C., Sritharan, R. (2009). Strongly Chordal and Chordal Bipartite Graphs Are Sandwich Monotone. In: Ngo, H.Q. (eds) Computing and Combinatorics. COCOON 2009. Lecture Notes in Computer Science, vol 5609. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02882-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02882-3_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02881-6

  • Online ISBN: 978-3-642-02882-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics