An Adaptive Combination of Matchers: Application to the Mapping of Biological Ontologies for Genome Annotation

  • Bastien Rance
  • Jean-François Gibrat
  • Christine Froidevaux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5647)

Abstract

Biological ontologies are widely used for genome annotation. Identifying correspondences between concepts of two ontologies (mapping) allows the reuse and sharing of annotations. Accordingly, biological ontology mapping has attracted a lot of interest. In this paper, we introduce O’Browser, a semi-automatic method for mapping two functional hierarchies using two sets of carefully annotated proteins. While being based on a classical ontology mapping architecture, O’Browser computes correspondences using a combination of different kinds of matchers. A key feature of O’Browser is that it places the expert at the center of the mapping process at two stages: (i) both to validate the very strong correspondences discovered by the system and to identify functional groups of concepts and (ii) to validate the correspondences given by the combination of results found by the matchers. These matchers have been designed in O’Browser to fit best with functional hierarchy features. For instance, we have introduced a new instance-based matcher which uses homology relationships between proteins. The combination of the different matchers is based on an original notion of adaptive weighting. Here, we show the ability of O’Browser to map concepts of Subtilist to concepts of FunCat, two functional hierarchies. First results appear to be very promising.

Keywords

Ontology mapping instance-based matcher functional annotation of genomes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rison, S., Hodgman, T., Thornton, J.: Comparison of functional annotation schemes for genomes. Functional & Integrative Genomics 1, 56–69 (2000)CrossRefGoogle Scholar
  2. 2.
    Riley, M.: Systems for categorizing functions of gene products. Curr. Opin. Struct. Biol., 388–392 (1998)Google Scholar
  3. 3.
    Moszer, I., Jones, L., Moreira, S., Fabry, C., Danchin, A.: Subtilist: the reference database for the Bacillus subtilis genome. Nucleic Acids Res. 30, 62–65 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ruepp, A., Zollner, A., Maier, D., Albermann, K., Hani, J., Mokrejs, M., Tetko, I., Güldener, U., Mannhaupt, G., Münsterkötter, M., Mewes, H.: The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res. 14(32(18), 5539–5545 (2004)Google Scholar
  5. 5.
    The Gene Ontology Consortium: Creating the gene ontology resource: design and implementation. Genome Res. 11, 1425–1433 (2001), http://www.geneontology.org
  6. 6.
    Bodenreider, O., Aubry, M., Burgun, A.: Non-lexical approaches to identifying associative relations in the gene ontology. In: Pacific Symposium on Biocomputing, pp. 104–115 (2005)Google Scholar
  7. 7.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: The state of the art. In: Dagstuhl Seminar on Semantic Interoperability and Integration, vol. 04391 (2005)Google Scholar
  9. 9.
    Ontology Matching web site, http://www.ontologymatching.org
  10. 10.
    ISWC 2008 Third International Workshop on Ontology Matching, Karlsruhe, October 26 (2008)Google Scholar
  11. 11.
    Noy, N.F., Musen, M.A.: Anchor-PROMPT: Using non-local context for semantic matching. In: Proceedings of the workshop on Ontologies and Information Sharing at the International Joint Conference on Artificial Intelligence (IJCAI), pp. 63–70 (2001)Google Scholar
  12. 12.
    Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matchering with COMA++. In: Proceedings of SIGMOD 2005 (2005)Google Scholar
  13. 13.
    Hu, W., Yuzhong, Q., Gong, C.: Matching large ontologies: A divide-and-conquer approach. Data Knowl. Eng. 67(1), 140–160 (2008)CrossRefGoogle Scholar
  14. 14.
    Ontology Alignment Evaluation Initiative, http://www.oaei.ontologymatching.org
  15. 15.
    Kirsten, T., Thor, A., Rahm, E.: Instance-based matching of large life science ontologies. In: Cohen-Boulakia, S., Tannen, V. (eds.) DILS 2007. LNCS (LNBI), vol. 4544, pp. 172–187. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)CrossRefPubMedGoogle Scholar
  17. 17.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10, 707–710 (1965)Google Scholar
  18. 18.
  19. 19.
    Lemoine, F., Labedan, B., Froidevaux, C.: GenoQuery: a new querying module for functional annotation in a genomic warehouse. Bioinformatics 24, 322–329 (2008)CrossRefGoogle Scholar
  20. 20.
    Noy, N., Musen, M.: PROMPT: Algorithm and tool for automated ontology merging and alignment. In: Proc. of AAAI 2000, pp. 450–455. MIT Press, Cambridge (2000)Google Scholar
  21. 21.
    Do, H.H., Rahm, E.: COMA - a system for flexible combination of schema matching approaches. In: VLDB, pp. 610–621 (2002)Google Scholar
  22. 22.
    Azé, J., Gentils, L., Toffano-Nioche, C., Loux, V., Gibrat, J.F., Bessières, P., Rouveirol, C., Poupon, A., Froidevaux, C.: Towards a semi-automatic functional annotation tool based on decision tree techniques. In: BMC Proceedings, International Workshop on Machine Learning in Systems Biology, MLSB 2007, vol. 2(4) (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Bastien Rance
    • 1
  • Jean-François Gibrat
    • 2
  • Christine Froidevaux
    • 1
  1. 1.LRI, Univ. Paris-Sud, CNRS UMR 8623OrsayFrance
  2. 2.INRA, Unité Mathématique, Informatique et Génome UR 1077Jouy-en-JosasFrance

Personalised recommendations