Advertisement

Integration of Abductive Reasoning and Constraint Optimization in SCIFF

  • Marco Gavanelli
  • Marco Alberti
  • Evelina Lamma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5649)

Abstract

Abductive Logic Programming (ALP) and Constraint Logic Programming (CLP) share the feature to constrain the set of possible solutions to a program via integrity or CLP constraints. These two frameworks have been merged in works by various authors, who developed efficient abductive proof-procedures empowered with constraint satisfaction techniques. However, while almost all CLP languages provide algorithms for finding an optimal solution with respect to some objective function (and not just any solution), the issue has received little attention in ALP.

In this paper we show how optimisation meta-predicates can be included in abductive proof-procedures, achieving in this way a significant improvement to research and practical applications of abductive reasoning.

In the paper, we give the declarative and operational semantics of an abductive proof-procedure that encloses constraint optimization meta-predicates, and we prove soundness in the three-valued completion semantics. In the proof-procedure, the abductive logic program can invoke optimisation meta-predicates, which can invoke abductive predicates, in a recursive way.

Keywords

Logic Program Logic Programming Operational Semantic Transition Optimize Integrity Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic programming. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5, pp. 235–324. Oxford University Press, Oxford (1998)Google Scholar
  2. 2.
    Eshghi, K., Kowalski, R.A.: Abduction compared with negation by failure. In: Levi, G., Martelli, M. (eds.) ICLP 1989, pp. 234–255 (1989)Google Scholar
  3. 3.
    Eshghi, K.: Abductive planning with the event calculus. In: ICLP 1988 (1988)Google Scholar
  4. 4.
    Kakas, A.C., Mancarella, P.: On the relation between Truth Maintenance and Abduction. In: Fukumura, T. (ed.) Proc. 1st Pacific Rim Int. Conf. on Artificial Intelligence, PRICAI (1990)Google Scholar
  5. 5.
    Denecker, M., De Schreye, D.: SLDNFA: an abductive procedure for abductive logic programs. Journal of Logic Programming 34, 111–167 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kakas, A.C., Michael, A., Mourlas, C.: ACLP: Abductive Constraint Logic Programming. Journal of Logic Programming 44, 129–177 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic programming. Journal of Logic Programming 33, 151–165 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kakas, A.C., van Nuffelen, B., Denecker, M.: \({\cal A}\)-System: Problem solving through abduction. In: Nebel, B. (ed.) Proc. of IJCAI 2001, pp. 591–596 (2001)Google Scholar
  9. 9.
    Alferes, J., Pereira, L., Swift, T.: Abduction in well-founded semantics and generalized stable models via tabled dual programs. Theory and Practice of Logic Programming 4 (2004)Google Scholar
  10. 10.
    Endriss, U., Mancarella, P., Sadri, F., Terreni, G., Toni, F.: The CIFF proof procedure for abductive logic programming with constraints. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 31–43. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    van Nuffelen, B., Denecker, M.: Problem solving in ID-logic with aggregates. In: Proc. 8th Int. Workshop on Non-Monotonic Reasoning, NMR 2000, pp. 1–9 (2000)Google Scholar
  12. 12.
    Fages, F.: From constraint minimization to goal optimization in CLP languages. In: Freuder, E. (ed.) CP 1996. LNCS, vol. 1118. Springer, Heidelberg (1996)Google Scholar
  13. 13.
    Marriott, K., Stuckey, P.: Semantics of constraint logic programs with optimization. In: Aït-Kaci, H., Hanus, M., Moreno-Navarro, J. (eds.) ICLP Workshop: Integration of Declarative Paradigms, pp. 23–35 (1994)Google Scholar
  14. 14.
    Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: The SCIFF framework. ACM Transactions on Computational Logic 9 (2008)Google Scholar
  15. 15.
    Gavanelli, M., Alberti, M., Lamma, E.: Integrating abduction and constraint optimization in constraint handling rules. In: Ghallab, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N. (eds.) ECAI 2008: 18th European Conference on Artificial Intelligence, pp. 903–904 (2008)Google Scholar
  16. 16.
    Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic Programming 37, 95–138 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Christiansen, H., Dahl, V.: HYPROLOG: A new logic programming language with assumptions and abduction. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 159–173. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Badea, L., Tilivea, D.: Abductive partial order planning with dependent fluents. In: Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS, vol. 2174, pp. 63–77. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Jaffar, J., Maher, M.: Constraint logic programming: a survey. Journal of Logic Programming 19-20, 503–582 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 200–212. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Fitting, M.: A Kripke-Kleene semantics for logic programs. Journal of Logic Programming 2, 295–312 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kunen, K.: Negation in logic programming. Journal of Logic Programming 4, 289–308 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Apt, K.R., Bol, R.N.: Logic programming and negation: a survey. Journal of Logic Programming 19/20, 9–71 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Abdennadher, S., Christiansen, H.: An experimental CLP platform for integrity constraints and abduction. In: Larsen, H., Kacprzyk, J., Zadrozny, S., Andreasen, T., Christiansen, H. (eds.) FQAS, Flexible Query Answering Systems. LNCS, pp. 141–152. Springer, Heidelberg (2000)Google Scholar
  25. 25.
    Gavanelli, M., Lamma, E., Mello, P., Milano, M., Torroni, P.: Interpreting abduction in CLP. In: Buccafurri, F. (ed.) APPIA-GULP-PRODE Joint Conference on Declarative Programming, Reggio Calabria, Italy, Università Mediterranea di Reggio Calabria, pp. 25–35 (2003)Google Scholar
  26. 26.
    Alberti, M., Chesani, F., Daolio, D., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and verification of agent interaction protocols in a logic-based system. Scalable Computing: Practice and Experience 8, 1–13 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marco Gavanelli
    • 1
  • Marco Alberti
    • 2
  • Evelina Lamma
    • 1
  1. 1.ENDIF, University of FerraraItaly
  2. 2.CENTRIA, Universidade Nova de LisboaPortugal

Personalised recommendations