Metabolic Network Expansion with Answer Set Programming

  • Torsten Schaub
  • Sven Thiele
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5649)


We propose a qualitative approach to elaborating the biosynthetic capacities of metabolic networks. In fact, large-scale metabolic networks as well as measured datasets suffer from substantial incompleteness. Moreover, traditional formal approaches to biosynthesis require kinetic information, which is rarely available. Our approach builds upon a formal method for analyzing large-scale metabolic networks. Mapping its principles into Answer Set Programming (ASP) allows us to address various biologically relevant problems. In particular, our approach benefits from the intrinsic incompleteness-tolerating capacities of ASP. Our approach is endorsed by recent complexity results, showing that the reconstruction of metabolic networks and related problems are NP-hard.


Logic Program Metabolic Network Integrity Constraint Choice Rule Reference Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Savageau, M.: Biochemical system analysis: a study of function and design in molecular biology. Addison-Wesley, Reading (1976)zbMATHGoogle Scholar
  2. 2.
    Kompala, D., Ramkrishna, D., Jansen, N., Tsao, G.: Investigation of bacterial-growth on mixed substrates. Biotechnology and Bioengineering 28(7), 1044–1055 (1986)CrossRefGoogle Scholar
  3. 3.
    Bonarius, H., Schmid, G., Tramper, J.: Flux analysis of underdetermined metabolic networks: The quest for the missing constraints. Trends Biotechnology 15, 308–314 (1997)CrossRefGoogle Scholar
  4. 4.
    Schilling, C., Schuster, S., Palsson, B., Heinrich, R.: Metabolic pathway analysis: Basic concepts and scientific applications in the post-genomic era. Biotechnology progress 15, 296–303 (1999)CrossRefGoogle Scholar
  5. 5.
    Wildermuth, M.: Metabolic control analysis: biological applications and insights. Genome Biology 1(6), 1031.1–1031.5 (2000)CrossRefGoogle Scholar
  6. 6.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Nikoloski, Z., Grimbs, S., May, P., Selbig, J.: Metabolic networks are np-hard to reconstruct. Journal of Theoretical Biology 254, 807–816 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Nikoloski, Z., Grimbs, S., Selbig, J., Ebenhöh, O.: Hardness and approximability of the inverse scope problem. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 99–112. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Ebenhöh, O., Handorf, T., Heinrich, R.: Structural analysis of expanding metabolic networks. Genome Informatics 15(1), 35–45 (2004)Google Scholar
  10. 10.
    Handorf, T., Ebenhöh, O., Heinrich, R.: Expanding metabolic networks: Scopes of compounds, robustness, and evolution. Journal of Molecular Evolution 61(4), 498–512 (2005)CrossRefGoogle Scholar
  11. 11.
    Christian, N., May, P., Kempa, S., Handorf, T., Ebenhöh, O.: An integrative approach towards completing genome-scale metabolic networks (2008) (submitted for publication)Google Scholar
  12. 12.
    Handorf, T., Ebenhöh, O., Heinrich, R.: An environmental perspective on metabolism. Journal of Theoretical Biology 252(3), 498–512 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected boolean search problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 71–86. Springer, Heidelberg (2009)Google Scholar
  15. 15.
    Christian, N., May, P., Kempa, S., Handorf, T., Ebenhöh, O.: Personal communication (2008)Google Scholar
  16. 16.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering an incremental ASP solver. In: [23], pp. 190–205Google Scholar
  17. 17.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM TOCL 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A., Berens, M.: A knowledge based approach for representing and reasoning about signaling networks. In: Proceedings ISMB 2004/ECCB 2004, pp. 15–22 (2004)Google Scholar
  19. 19.
    Dworschak, S., Grell, S., Nikiforova, V., Schaub, T., Selbig, J.: Modeling biological networks by action languages via answer set programming. Constraints 13(1-2), 21–65 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gebser, M., Schaub, T., Thiele, S., Usadel, B., Veber, P.: Detecting inconsistencies in large biological networks with answer set programming. In: [23], pp. 130–144Google Scholar
  21. 21.
    Erdem, E., Türe, F.: Efficient haplotype inference with answer set programming. In: Proceedings AAAI 2008, pp. 436–441. AAAI Press, Menlo Park (2008)Google Scholar
  22. 22.
    Ray, O., Whelan, K., King, R.: A nonmonotonic logical approach for modelling and revising metabolic networks. In: Proceedings CISIS 2009. IEEE Press, Los Alamitos (to appear, 2009)Google Scholar
  23. 23.
    Garcia de la Banda, M., Pontelli, E. (eds.): ICLP 2008. LNCS, vol. 5366. Springer, Heidelberg (2008)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Torsten Schaub
    • 1
  • Sven Thiele
    • 1
  1. 1.Institut für InformatikUniversität PotsdamPotsdamGermany

Personalised recommendations