A Language for Large Ensembles of Independently Executing Nodes

  • Michael P. Ashley-Rollman
  • Peter Lee
  • Seth Copen Goldstein
  • Padmanabhan Pillai
  • Jason D. Campbell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5649)


We address how to write programs for distributed computing systems in which the network topology can change dynamically. Examples of such systems, which we call ensembles, include programmable sensor networks (where the network topology can change due to failures in the nodes or links) and modular robotics systems (whose physical configuration can be rearranged under program control). We extend Meld [1], a logic programming language that allows an ensemble to be viewed as a single computing system. In addition to proving some key properties of the language, we have also implemented a complete compiler for Meld. It generates code for TinyOS [14] and for a Claytronics simulator [12]. We have successfully written correct, efficient, and complex programs for ensembles containing over one million nodes.


Sensor Network Span Tree Large Ensemble Message Complexity Home Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashley-Rollman, M.P., Goldstein, S.C., Lee, P., Mowry, T.C., Pillai, P.: Meld: A declarative approach to programming ensembles. In: Proc. of the IEEE Int’l Conf. on Intelligent Robots and Systems (October 2007)Google Scholar
  2. 2.
    Bachrach, J., McLurkin, J., Grue, A.: Protoswarm: A language for programming multi-robot systems using the amorphous medium abstraction. In: Int’l Conf. in Autonomous Agents and Multiagent Systems (AAMAS) (May 2008)Google Scholar
  3. 3.
    Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor/actuator networks. IEEE Intelligent Systems 21(2), 10–19 (2006)CrossRefGoogle Scholar
  4. 4.
    Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog (and never dared to ask). IEEE Transactions on Knowledge and Data Engineering 1(1), 146–166 (1989)CrossRefGoogle Scholar
  5. 5.
    Chu, D., Tavakoli, A., Popa, L., Hellerstein, J.: Entirely declarative sensor network systems (2006)Google Scholar
  6. 6.
    Culler, D., Estrin, D., Srivastava, M.: Guest editors’ introduction: Overview of sensor networks. Computer 37(8), 41–49 (2004)CrossRefGoogle Scholar
  7. 7.
    De Rosa, M., Goldstein, S.C., Lee, P., Campbell, J.D., Pillai, P.: Programming modular robots with locally distributed predicates. In: Proc. of the IEEE Int’l Conf. on Robotics and Automation (2008)Google Scholar
  8. 8.
    Dewey, D., Srinivasa, S., Ashley-Rollman, M.P., De Rosa, M., Pillai, P., Mowry, T.C., Campbell, J.D., Goldstein, S.C.: Generalizing metamodules to simplify planning in modular robotic systems. In: Proc. of Int’l Conf. on Intelligent Robots and Systems, Nice, France (September 2008)Google Scholar
  9. 9.
    Dewey, D., Srinivasa, S., Ashley-Rollman, M.P., De Rosa, M., Pillai, P., Mowry, T., Campbell, J.D., Goldstein, S.C.: Generalizing metamodules to simplify planning in modular robotic systems. Technical Report CMU-CS-08-139, Carnegie Mellon University (2008)Google Scholar
  10. 10.
    Funiak, S., Ashley-Rollman, M.P., Pillai, P., Campbell, J.D., Goldstein, S.C.: Distributed localization of modular robot ensembles. In: Proc. of the 3rd Robotics Science and Systems (2008)Google Scholar
  11. 11.
    Goldstein, S., Campbell, J., Mowry, T.: Programmable matter. IEEE Computer (June 2005)Google Scholar
  12. 12.
    Intel Corporation and Carnegie Mellon University. Dprsim: The dynamic physical rendering simulator (2006),
  13. 13.
    Kothari, N., Gummadi, R., Millstein, T., Govindan, R.: Reliable and efficient programming abstractions for wireless sensor networks. In: PLDI 2007: Proc. of the 2007 ACM SIGPLAN conference on Programming language design and implementation, pp. 200–210. ACM, New York (2007)CrossRefGoogle Scholar
  14. 14.
    Levis, P.: TinyOS Programming. UC - Berkeley (2006)Google Scholar
  15. 15.
    Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis, P., Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative networking: language, execution and optimization. In: Proc. of the 2006 ACM SIGMOD int’l conf. on Management of data, pp. 97–108. ACM Press, New York (2006)CrossRefGoogle Scholar
  16. 16.
    Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: an acquisitional query processing system for sensor networks. ACM Trans. Database Syst. 30(1), 122–173 (2005)CrossRefGoogle Scholar
  17. 17.
    Nagpal, R.: Programmable Self-Assembly: Constructing Global Shape Using Biologically-Inspired Local Interactions and Origami Mathematics. Ph.D thesis, MIT, MIT AI Lab. Technical Memo 2001-008 (2001)Google Scholar
  18. 18.
    Newton, R., Morrisett, G., Welsh, M.: The Regiment macroprogramming system. In: Proc. of the Int’l conf. on Information Processing in Sensor Networks (IPSN 2007) (April 2007)Google Scholar
  19. 19.
    Pfenning, F., Schürmann, C.: System description: Twelf - a meta-logical framework for deductive systems. In: Proc. of Int’l Conf. on Automated Deduction, pp. 202–206 (1999)Google Scholar
  20. 20.
    Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstraction for sensor networks. In: Proc. of the 2nd int’l conf. on Mobile systems, applications, and services, pp. 99–110. ACM Press, New York (2004)Google Scholar
  21. 21.
    Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robotics and Automation Magazine 14(1), 43–52 (2007)CrossRefGoogle Scholar
  22. 22.
    Zaniolo, C., Arni, N., Ong, K.: Negation and aggregates in recursive rules: the LDL++ approach. In: Ceri, S., Tsur, S., Tanaka, K. (eds.) DOOD 1993. LNCS, vol. 760, pp. 204–221. Springer, Heidelberg (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael P. Ashley-Rollman
    • 1
  • Peter Lee
    • 1
  • Seth Copen Goldstein
    • 1
  • Padmanabhan Pillai
    • 2
  • Jason D. Campbell
    • 2
  1. 1.Carnegie Mellon UniversityPittsburgh
  2. 2.Intel Research PittsburghPittsburgh

Personalised recommendations