Advertisement

Constraint Answer Set Solving

  • Martin Gebser
  • Max Ostrowski
  • Torsten Schaub
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5649)

Abstract

We present a new approach to integrating Constraint Processing (CP) techniques into Answer Set Programming (ASP). Based on an alternative semantic approach, we develop an algorithmic framework for conflict-driven ASP solving that exploits CP solving capacities. A significant technical issue concerns the combination of conflict information from different solver types. We have implemented our approach, combining ASP solver clingo with the generic CP solver gecode, and we empirically investigate its computational impact.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-prolog decision support system for the space shuttle. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990, pp. 169–183. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Balduccini, M., Gelfond, M., Nogueira, M.: Answer set based design of knowledge systems. Annals of Mathematics and Artificial Intelligence 47(1-2), 183–219 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A., Berens, M.: A knowledge based approach for representing and reasoning about signaling networks. In: Proceedings of the Twelfth International Conference on Intelligent Systems for Molecular Biology/Third European Conference on Computational Biology (ISMB 2004/ECCB 2004), pp. 15–22 (2004)Google Scholar
  5. 5.
    Dworschak, S., Grote, T., König, A., Schaub, T., Veber, P.: Tools for representing and reasoning about biological models in action language \(\mathcal{C}\). In: Pagnucco, M., Thielscher, M. (eds.) Proceedings of the Twelfth International Workshop on Nonmonotonic Reasoning (NMR 2008). The University of New South Wales, Technical Report Series, pp. 94–102 (2008)Google Scholar
  6. 6.
    Gebser, M., Schaub, T., Thiele, S., Usadel, B., Veber, P.: Detecting inconsistencies in large biological networks with answer set programming. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 130–144. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Mitchell, D.: A SAT solver primer. Bulletin of the European Association for Theoretical Computer Science 85, 112–133 (2005)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS Press, Amsterdam (2009)zbMATHGoogle Scholar
  9. 9.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, San Francisco (2003)zbMATHGoogle Scholar
  11. 11.
    Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  12. 12.
    Baselice, S., Bonatti, P., Gelfond, M.: Towards an integration of answer set and constraint solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 52–66. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Mellarkod, V., Gelfond, M.: Integrating answer set reasoning with constraint solving techniques. In: Garrigue, J., Hermenegildo, M. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 15–31. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Mellarkod, V., Gelfond, M., Zhang, Y.: Integrating answer set programming and constraint logic programming. Annals of Mathematics and Artificial Intelligence (to appear, 2008)Google Scholar
  15. 15.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
  17. 17.
  18. 18.
  19. 19.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: Veloso, M. (ed.) Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 386–392. AAAI Press/MIT Press, Menlo Park (2007)Google Scholar
  20. 20.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s guide to gringo, clasp, clingo, and iclingo. In: [17]Google Scholar
  21. 21.
    Marques-Silva, J., Sakallah, K.: GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in a Boolean satisfiability solver. In: Proceedings of the International Conference on Computer-Aided Design (ICCAD 2001), pp. 279–285 (2001)Google Scholar
  23. 23.
    Fages, F.: Consistency of Clark’s completion and the existence of stable models. Journal of Methods of Logic in Computer Science 1, 51–60 (1994)Google Scholar
  24. 24.
    Calimeri, F., Cozza, S., Ianni, G.: External sources of knowledge and value invention in logic programming. Annals of Mathematics and Artificial Intelligence 50(3-4), 333–361 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Martin Gebser
    • 1
  • Max Ostrowski
    • 1
  • Torsten Schaub
    • 1
  1. 1.Institut für InformatikUniversität PotsdamPotsdam

Personalised recommendations