Skip to main content

Resonant Biochemical Sensors Based on Photonic Bandgap Waveguides and Fibers

  • Chapter
Optical Guided-wave Chemical and Biosensors II

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 8))

Abstract

I describe photonic bandgap (PBG) fiber-based resonant optical sensors of analyte’s refractive index which have recently invoked strong interest due to the development of novel fiber types and of techniques for the activation of fiber microstructure with functional materials. Particularly, I consider two sensors types. One employs hollow-core photonic bandgap fibers where the core-guided mode is confined in the analyte’s filled core through resonant effect in the surrounding periodic reflector. The other employs metallized photonic bandgap waveguides and fibers, where core-guided mode is phase-matched with a plasmon wave propagating at the fiber/analyte interface. In resonant sensors, one typically employs fibers with strongly nonuniform spectral transmission characteristics that are sensitive to changes in the real part of the analyte’s refractive index. Moreover, if narrow absorption lines are present in the analyte transmission spectrum, due to Kramers–Kronig relation, this will also result in strong variation in the real part of the refractive index in the vicinity of an absorption line. Therefore, resonant sensors allow detection of minute changes both in the real part of the analyte’s refractive index (\( {10^{ - 6}} - {10^{ - 4}}{\hbox{ RIU}} \)) and in the imaginary part of the analyte’s refractive index in the vicinity of absorption lines. Although the operational principle of almost all PBG fiber-based sensors relies on strong sensitivity of the PBG fiber losses to the value of the analyte’s refractive index, particular transduction mechanisms for biodetection vary significantly. Finally, I detail various sensor implementations, modes of operation, as well as analysis of sensitivities for some of the common transduction mechanisms for biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FOS:

Fiber-optic sensors

PBG:

Photonic band gap

PCF:

Photonic crystal fiber

PCR:

Polymerize chain reaction

SPR:

Surface plasmon resonance

TIR:

Total internal reflection

\( d \) :

Layer thickness in a multilayer waveguide

\( dA \) :

Area differential in the transverse cross section of a waveguide

\( {{\rm E}} \) :

Electric field vector

\( {{{\rm E}}_t} \) :

Transverse electric field vector

\( f \) :

Overlap factor

\( {{\rm H}} \) :

Magnetic field vector

\( {{{\rm H}}_t} \) :

Transverse magnetic field vector

\( L \) :

Waveguide length

\( n \) :

Refractive index

\( P \) :

Power of guided light

\( R_{\rm{core}} \) :

Fiber core diameter

\( R_{\rm{bend}} \) :

Fiber bending radius

\( {S_{\rm{a}}} \) :

Amplitude sensitivity

\( {S_\lambda } \) :

Spectral sensitivity

\( {{ \hat {\rm z}}} \) :

Vector along the waveguide direction

\( \alpha \) :

Waveguide loss coefficient per unit of length

\( \varepsilon \) :

Relative permittivity

\( \lambda \) :

Wavelength of light in vacuum

\( \delta \) :

Small parameter characterizing changes in the measurand

References

  1. Agranovich VM, Mills DL (1982) Surface polaritons – electromagnetic waves at surfaces and interfaces. North-Holland, Amsterdam

    Google Scholar 

  2. Al-Bader SJ, Imtaar M (1993) Optical fiber hybrid-surface plasmon polaritons. J Opt Soc Am B 10:83–88

    Article  Google Scholar 

  3. Alonso R, Subias J, Pelayo J, Villuendas F, Tornos J (1994) Single-mode optical fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes. Appl Opt 33:5197–5201

    Article  CAS  Google Scholar 

  4. Argyros A, van Eijkelenborg MA, Large MCJ, Bassett IM (2006) Hollow-core microstructured polymer optical fiber. Opt Lett 31:172–174

    Article  CAS  Google Scholar 

  5. Balasubramanian S, Sorokulova IB, Vodianov VJ, Simonian AL (2007) Lytic phage as aspecific and selective probe for detection of staphylococcus aureus – a surface plasmon resonance study. Biosens Bioelectron 22:948–955

    Article  CAS  Google Scholar 

  6. Barkou SE, Broeng J, Bjarklev A (1999) Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect. Opt Lett 24:46–49

    Article  CAS  Google Scholar 

  7. Charlton C, Temelkuran B, Dellemann G, Mizaikoff B (2005) Midinfrared sensors meet nanotechnology Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides. Appl Phys Lett 86:194102

    Article  Google Scholar 

  8. Cox FM, Arguros A, Large MCJ (2006) Liquid-filled hollow core microstructured polymer optical fiber. Opt Express 14:4135–4140

    Article  CAS  Google Scholar 

  9. Ctyroky J, Abdelmalek F, Ecke W, Usbeck K (1999a) Modelling of the surface plasmon resonance waveguide sensor with Bragg grating. Opt Quantum Electron 31:927–941

    Article  CAS  Google Scholar 

  10. Ctyroky J, Homola J, Lambeck PV, Musa S, Hoekstra HJWM, Harris RD, Wilkinson JS, Usievich B, Lyndin NM (1999b) Theory and modelling of optical waveguide sensors utilising surface plasmon resonance. Sensors Actuators B Chem 54:66–73

    Article  Google Scholar 

  11. DeMarco DV, Lim DV (2001) Direct detection of escherichia colio157:h7 in unpasterized apple juice with an evanescent wave sensor. J Rapid Meth Automation Micro 9:241–257

    Article  Google Scholar 

  12. Diez A, Andres MV, Cruz JL (2001) In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers. Sensors Actuators B Chem 73:95–99

    Article  Google Scholar 

  13. Dostalek J, Ctyroky J, Homola J, Brynda E, Skalsky M, Nekvindova P, Spirkova J, Skvor J, Schrofel J (2001) Surface plasmon resonance biosensor based on integrated optical waveguide. Sensors Actuators B Chem 76:8–12

    Article  Google Scholar 

  14. Fini JM (2004) Microstructure fibres for sensing in gases and liquids. Meas Sci Technol 15:1120–1128

    Article  CAS  Google Scholar 

  15. Jensen JB, Hoiby PE, Emiliyanov G, Bang O, Pedersen LH, Bjarklev A (2005) Selective detection of antibodies in polymer microstructured optical fibers. Opt Express 13:5883–5889

    Article  CAS  Google Scholar 

  16. Johnson SG, Ibanescu M, Skorobogatiy M, Weiseberg O, Engeness TD, Soljacic M, Jacobs SA, Joannopoulos JD, Fink Y (2001) Low-loss asymptotically single-mode propagation in large core omniguide fibers. Opt Express 9:748–779

    Article  CAS  Google Scholar 

  17. Jorgenson RC, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sensors Actuators B Chem 12:213–220

    Article  CAS  Google Scholar 

  18. Gao Y, Guo N, Gauvreau B, Rajabian M, Skorobogata O, Pone E, Zabeida O, Martinu L, Dubois C, Skorobogatiy M (2006) Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication. J Mater Res 21:2246–2254

    Article  CAS  Google Scholar 

  19. Gauvreau B, Hassani A, Fehri MF, Kabashin A, Skorobogatiy MA (2007) Photonic bandgap fiber-based Surface Plasmon Resonance sensors. Opt Express 15:11413–11426

    Article  CAS  Google Scholar 

  20. Grigorenko AN, Nikitin P, Kabashin AV (1999) Phase jumps and interferometric surface plasmon resonance imaging. Appl Phys Lett 75:3917–3919

    Article  CAS  Google Scholar 

  21. Gupta BD, Sharma AK (2005) Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor a theoretical study. Sensors Actuators B Chem 107:40–46

    Article  Google Scholar 

  22. Harrington JA (2000) A review of IR transmitting hollow waveguides. Fib Integr Opt 19:211–227

    Article  CAS  Google Scholar 

  23. Harris R, Wilkinson JS (1995) Waveguide surface plasmon resonance sensors. Sensors Actuators B Chem 29:261–267

    Article  Google Scholar 

  24. Hassani A, Skorobogatiy M (2006) Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt Express 14:11616–11621

    Article  CAS  Google Scholar 

  25. Homola J (1995) Optical fiber sensor based on surface plasmon resonance excitation. Sensors Actuators B Chem 29:401–405

    Article  Google Scholar 

  26. Homola J, Slavik R, Ctyroky J (1997a) Intreaction between fiber modes and surface plasmon wave spectral properties. Opt Lett 22:1403–1405

    Article  CAS  Google Scholar 

  27. Homola J, Ctyroky J, Skalky M, Hradiliva J, Kolarova P (1997b) A surface plasmon resonance based integrated optical sensor. Sensors Actuators B Chem 39:286–296

    Article  Google Scholar 

  28. Hoo YL, Jin W, Ho HL, Ju L, Wang DN (2005) Gas diffusion measurement using hollow-core photonic bandgap fiber. Sensors Actuators B Chem 105:183–186

    Article  Google Scholar 

  29. Kabashin AV, Nikitin P (1998) Surface plasmon resonance interferometer for bio- and chemical-sensors. Opt Commun 150:5–8

    Article  CAS  Google Scholar 

  30. Kim N, Park IS, Kim WY (2007) Salmonella detection with a direct binding optical grating coupler immunosensor. Sensors Actuators B Chem 121:606–615

    Article  Google Scholar 

  31. Knight JC, Birks TA, Russell RSJ, Rarity JG (1998) Bragg scattering from an obliquely illuminated photonic crystal fiber. Appl Opt 37:449–452

    Article  CAS  Google Scholar 

  32. Konorov SO, Zheltikov AM, Scalora M (2005a) Photonic crystal fiber as a multifunctional optical sensor and sample collector. Opt Express 13:3454–3459

    Article  CAS  Google Scholar 

  33. Konorov SO, Fedotov AB, Zheltkov AM, Miles RB (2005b) Phase-matched four-wave mixing and sensing of water molecules by coherent anti-Stokes Raman scattering in large-core-area hollow photonic-crystal fibers. J Opt Soc Am B 22:2049–2053

    Article  CAS  Google Scholar 

  34. Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light. Z Naturforschung A 23:2135–2142

    CAS  Google Scholar 

  35. Kuhlmey BT, Pathmanandavel K, McPhedran RC (2006) Multipole analysis of photonic crystal fibers with coated inclusions. Opt Express 14:10851–10864

    Article  Google Scholar 

  36. Lavers CP, Wilkinson JS (1994) A waveguide-coupled surface-plasmon sensor for an aqueous environment. Sensors Actuators B Chem 22:475–481

    Article  Google Scholar 

  37. Liedberg B, Nylander C, Lundstrom I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators B Chem 4:299–304

    Article  CAS  Google Scholar 

  38. McLean A (2003) Detection of hydrocarbon fuel spills using a distributed fiber-optic sensor. Sensors Actuators A Phys 109:60–67

    Article  Google Scholar 

  39. Melendez JL, Carr R, Bartholomew DU, Kukanskis KA, Elkind J, Yee SS, Furlong CE, Woodbury RG (1996) A commercial solution for surface plasmon sensing. Sensors Actuators B Chem 35:212–216

    Article  Google Scholar 

  40. Monzon-Hernandez D, Villatoro J, Talavera D, Luna-Moreno D (2004) Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks. Appl Opt 43:1216–1220

    Article  Google Scholar 

  41. Monzon-Hernandez D, Villatoro J (2006) High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor. Sensors Actuators B Chem 115:227–231

    Article  Google Scholar 

  42. Murao T, Saitoh K, Koshiba M (2006) Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single mode operation. Opt Express 14:2404–2412

    Article  Google Scholar 

  43. Piliarik M, Homola J, Manikova Z, Ctyroky J (2003) Surface plasmon resonance based on a polarization-maintaining optical fiber. Sensors Actuators B Chem 90:236–242

    Article  Google Scholar 

  44. Pone E, Dubois C, Dupuis A, Lacroix S, Skorobogatiy M (2006a) Fabrication of the hollow all-polymer Bragg fibers. In: Proceedings of European Conference on Optical Communication (ECOC); We4.4.6, Cannes, France

    Google Scholar 

  45. Pone E, Dubois C, Gu N, Gao Y, Dupuis A, Boismenu F, Lacroix S, Skorobogatiy M (2006b) Drawing of the hollow all-polymer Bragg fibers. Opt Express 14:5838–5852

    Article  CAS  Google Scholar 

  46. Russell PStJ (2006) Photonic crystal fibers. J Lightwave Technol 24:4729–4749

    Article  Google Scholar 

  47. Shepard JR, Danin-Poleg Y, Kashi Y, Walt DR (2005) Array-based binary analysis for bacterial typing. Anal Chem 77:319–326

    Article  CAS  Google Scholar 

  48. Sheridan AK, Harris RD, Bartlett PN, Wilkinson JS (2004) Phase interrogation of an integrated optical SPR sensor. Sensors Actuators B Chem 97:114–121

    Article  Google Scholar 

  49. Shi YW, Ito K, Matsuura Y, Miyagi M (2005) Multiwavelength laser light transmission of hollow optical fiber from the visible to the mid-infrared. Opt Lett 30:2867–2869

    Article  CAS  Google Scholar 

  50. Skorobogatiy M (2005) Efficient anti-guiding of TE and TM polarizations in low index core waveguides without the need of omnidirectional reflector. Opt Lett 30:2991–2993

    Article  CAS  Google Scholar 

  51. Skorobogatiy M, Kabashin A (2006a) Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide. Opt Express 14:8419–8424

    Article  Google Scholar 

  52. Skorobogatiy M, Kabashin A (2006b) Photon crystal waveguide-based surface plasmon resonance biosensor. Appl Phys Lett 89:211641

    Article  Google Scholar 

  53. Smith CM, Venkataraman N, Gallagher MT, Müller D, West JA, Borrelli NF, Allan DC, Koch KW (2003) Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424:657–659

    Article  CAS  Google Scholar 

  54. Smolka S, Barth M, Benson O (2007) Highly efficient fluorescence sensing with hollow core photonic crystal fibers. Opt Express 15:12783–12791

    Article  CAS  Google Scholar 

  55. Snyder AW, Love J (2008) Optical waveguide theory, 2nd edn. Springer, London

    Google Scholar 

  56. Suzuki H, Sugimoto M, Matsuiand Y, Kondoh J (2006) Fundamental characteristics of a dual-colour fibre optic SPR sensor. Meas Sci Technol 17:1547–1552

    Article  CAS  Google Scholar 

  57. Temelkuran B, Hart SD, Benoit G, Joannopoulos JD, Fink Y (2002) Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420:650–653

    Article  CAS  Google Scholar 

  58. Trouillet A, Ronot-Trioli C, Veillas C, Gagnaire H (1996) Chemical sensing by surface plasmon resonance in a multimode optical fibre. Pure Appl Opt 5:227–237

    Article  CAS  Google Scholar 

  59. Tubb AJC, Payne FP, Millington RB, Lowe CR (1997) Single-mode optical fibre surface plasma wave chemical sensor. Sensors Actuators B Chem 41:71–79

    Article  Google Scholar 

  60. Vidal MB, Lopez R, Aleggret S, Alonso-Chamarro J, Garces I, Mateo J (1993) Determination of probable alcohol yield in musts by means of an SPR optical sensor. Sensors Actuators B Chem 11:455–459

    Article  Google Scholar 

  61. Vienne G, Xu Y, Jakobsen C, Deyerl HJ, Jensen J, Sorensen T, Hansen T, Huang Y, Terrel M, Lee R, Mortensen N, Broeng J, Simonsen H, Bjarklev A, Yariv A (2004) Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibres with nano-supports. Opt Express 12:3500–3508

    Article  Google Scholar 

  62. Watts H, Lowe C, Pollard-Knight D (1994) Optical biosensor for monitoring microbial cells. Anal Chem 66:2465–2470

    Article  CAS  Google Scholar 

  63. Weiss MN, Srivastava R, Grogner H (1996) Experimental investigation of a surface plasmon-based integrated-optic humidity sensor. Electron Lett 32:842–843

    Article  CAS  Google Scholar 

  64. Weisser M, Menges B, Mittler-Neher S (1999) Refractive index and thickness determination of monolayers by plasmons. Sensors Actuators B Chem 56:189–197

    Article  Google Scholar 

  65. Zhang LM, Uttamchandani D (1988) Optical chemical sensing employing surface plasmon resonance. Electron Lett 23:1469–1470

    Article  Google Scholar 

  66. Zourob M, Mohr S, Brown BJT, McDonnell FPR, MB GNJ (2005a) An integrated metal clad leaky waveguide sensor for detection of bacteria. Anal Chem 77:232–242

    Article  CAS  Google Scholar 

  67. Zourob M, Mohr S, Brown BJT, Fielden PR, McDonnell MB, Goddard NJ (2005b) An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria. Lab Chip 5:1360–1365

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim Skorobogatiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skorobogatiy, M. (2010). Resonant Biochemical Sensors Based on Photonic Bandgap Waveguides and Fibers. In: Zourob, M., Lakhtakia, A. (eds) Optical Guided-wave Chemical and Biosensors II. Springer Series on Chemical Sensors and Biosensors, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02827-4_3

Download citation

Publish with us

Policies and ethics