Skip to main content

Differentiation and Plasticity of Stem Cells for Tissue Engineering

  • 3039 Accesses

Abstract

Stem cells are defined as undifferentiated cells that have the capacity to self-renew and to differentiate into various mature cells at a single cell level [118]. Stem cells support normal embryogenesis and postnatal life. Stem cells serve to renew tissue throughout an individual’s postnatal life by replacing the cells that are lost owing to everyday wear and tear in our bodies. Bone marrow contains two types of stem cells: hematopoietic stem cell (HSC) and mesenchymal stem cells (MSCs). HSCs are able to give rise to all cells in the hematopoietic system [99, 100]. Injection of a single mCD34(lo/-), c-Kit+, Sca-1(+), lineage markers negative (Lin-) cell resulted in long-term reconstitution of the lymphohematopoietic system [78]. MSCs are multipotent, might be immune privileged [59, 81], and can be expanded easily ex vivo. MSCs isolated from either adult bone marrow or other origin such as adipose tissue have shown a great potential for cell therapy because these cells possess multipotent capabilities [81], proliferate rapidly, induce angiogenesis, and differentiate into myogenic and other cells [111, 115]. MSCs have been widely used for tissue engineering. In this chapter, we focus on MSCs.

Keywords

  • Stem Cell
  • Green Fluorescent Protein Signal
  • Soft Tissue Repair
  • Human ASCs
  • Stem Cell Plasticity

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-02824-3_7
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-02824-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5

References

  1. Abbott JD et al. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation. 2004;110(21): 3300–5.

    PubMed  CrossRef  Google Scholar 

  2. Alt E, et al. Effect of freshly isolated autologous tissue resident stromal cells on cardiac function and perfusion following acute myocardial infarction. Int J Cardiol. 2009; doi:10.1016/j.ijcard.2009.03.12.

    Google Scholar 

  3. Altman AM et al. Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells. Biomaterials. 2008;29(10):1431–42.

    CAS  PubMed  CrossRef  Google Scholar 

  4. Altman AM et al. Human adipose-derived stem cells adhere to acellular dermal matrix. Aesthetic Plast Surg. 2008;32(4): 698–9.

    CAS  PubMed  CrossRef  Google Scholar 

  5. Altman AM et al. IFATS collection: human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells. 2009;27(1):250–8.

    CAS  PubMed  CrossRef  Google Scholar 

  6. Amado LC et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA. 2005;102(32): 11474–9.

    CAS  PubMed  CrossRef  Google Scholar 

  7. Amos PJ, et al. IFATS series: the role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype. Stem Cells. 2008;26(10):2682–90.

    Google Scholar 

  8. Assmus B et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation. 2002;106(24):3009–17.

    PubMed  CrossRef  Google Scholar 

  9. Bai X, Yan Y, Song YH, Seidensticker M, Rabinovich B, Metzele R, Bankson JA, Vykoukal D, Alt E. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur Heart J. 2010;31(4):489–501. Epub 2009 Dec 25.PMID: 20037143.

    Google Scholar 

  10. Bai X et al. Genetically selected stem cells from human adipose tissue express cardiac markers. Biochem Biophys Res Commun. 2007;353(3):665–71.

    CAS  PubMed  CrossRef  Google Scholar 

  11. Bai X et al. Electrophysiological properties of human adipose tissue-derived stem cells. Am J Physiol Cell Physiol. 2007;293(5):C1539–50.

    CAS  PubMed  CrossRef  Google Scholar 

  12. Bartholomew A et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30(1):42–8.

    PubMed  CrossRef  Google Scholar 

  13. Bi Y et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13(10):1219–27.

    CAS  PubMed  CrossRef  Google Scholar 

  14. Billings Jr E, May Jr JW. Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery. Plast Reconstr Surg. 1989;83(2):368–81.

    PubMed  CrossRef  Google Scholar 

  15. Breitbach M et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood. 2007;110(4): 1362–9.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Bunnell BA et al. Differentiation of adipose stem cells. Methods Mol Biol. 2008;456:155–71.

    PubMed  CrossRef  Google Scholar 

  17. Cao JM et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000; 101(16):1960–9.

    CAS  PubMed  Google Scholar 

  18. Cho SW et al. Engineering of volume-stable adipose tissues. Biomaterials. 2005;26(17):3577–85.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Corre J et al. Human subcutaneous adipose cells support complete differentiation but not self-renewal of hematopoietic progenitors. J Cell Physiol. 2006;208(2):282–8.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Cousin B et al. Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochem Biophys Res Commun. 2003;301(4):1016–22.

    CAS  PubMed  CrossRef  Google Scholar 

  21. Dimmeler S, Zeiher AM, Schneider MD. Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest. 2005;115(3):572–83.

    CAS  PubMed  Google Scholar 

  22. Dominici M et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4):315–7.

    CAS  PubMed  CrossRef  Google Scholar 

  23. Erickson GR et al. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun. 2002;290(2):763–9.

    CAS  PubMed  CrossRef  Google Scholar 

  24. Ferrari G et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998;279(5356):1528–30.

    CAS  PubMed  CrossRef  Google Scholar 

  25. Fotuhi P, Song YH, Alt E. Electrophysiological consequence of adipose-derived stem cell transplantation in infarcted porcine myocardium. Europace. 2007;9(12):1218–21.

    PubMed  CrossRef  Google Scholar 

  26. Frangioni JV, Hajjar RJ. In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation. 2004; 110(21):3378–83.

    PubMed  CrossRef  Google Scholar 

  27. Freyman T et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J. 2006;27(9): 1114–22.

    PubMed  CrossRef  Google Scholar 

  28. Friedenstein AJ et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol. 1974;2(2):83–92.

    CAS  PubMed  Google Scholar 

  29. Garcia-Dorado D et al. Analysis of myocardial oedema by magnetic resonance imaging early after coronary artery occlusion with or without reperfusion. Cardiovasc Res. 1993;27(8):1462–9.

    CAS  PubMed  CrossRef  Google Scholar 

  30. Garcion E et al. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development. 2004;131(14):3423–32.

    CAS  PubMed  CrossRef  Google Scholar 

  31. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100(9):1249–60.

    CAS  PubMed  CrossRef  Google Scholar 

  32. Gnecchi M et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005;11(4):367–8.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Gronthos S, Simmons PJ. The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro. Blood. 1995;85(4): 929–40.

    CAS  PubMed  Google Scholar 

  34. Guilak F et al. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol. 2006;206(1):229–37.

    CAS  PubMed  CrossRef  Google Scholar 

  35. Halvorsen YC, Gimble JM. Adipose-derived stromal cells–their utility and potential in bone formation. Int J Obes Relat Metab Disord. 2000;24 Suppl 4:S41–4.

    CAS  PubMed  Google Scholar 

  36. Halvorsen YD et al. Thiazolidinediones and glucocorticoids synergistically induce differentiation of human adipose tissue stromal cells: biochemical, cellular, and molecular analysis. Metabolism. 2001;50(4):407–13.

    CAS  PubMed  CrossRef  Google Scholar 

  37. Hickerson WL, et al. Cultured epidermal autografts and allodermis combination for permanent burn wound coverage. Burns. 1994;20(Suppl 1):S52–5; discussion S55–6.

    Google Scholar 

  38. Hofmann M et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111(17):2198–202.

    PubMed  CrossRef  Google Scholar 

  39. Huang JI, et al. Rat extramedullary adipose tissue as a source of osteochondrogenic progenitor cells. Plast Reconstr Surg. 2002;109(3):1033–41; discussion 1042–3.

    Google Scholar 

  40. Izumi K, et al. Ex vivo development of a composite human oral mucosal equivalent. J Oral Maxillofac Surg. 1999;57(5): 571–7; discussion 577–8.

    Google Scholar 

  41. Jensen UB, Lowell S, Watt FM. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development. 1999;126(11): 2409–18.

    CAS  PubMed  Google Scholar 

  42. Jiang Y et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–9.

    CAS  PubMed  CrossRef  Google Scholar 

  43. Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell. 1993;73(4): 713–24.

    CAS  PubMed  CrossRef  Google Scholar 

  44. Kajstura J et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res. 2005;96(1):127–37.

    CAS  PubMed  CrossRef  Google Scholar 

  45. Kamihata H et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation. 2001; 104(9):1046–52.

    CAS  PubMed  CrossRef  Google Scholar 

  46. Kang SK et al. Neurogenesis of Rhesus adipose stromal cells. J Cell Sci. 2004;117(Pt 18):4289–99.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Kiger AA et al. Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science. 2001;294(5551):2542–5.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Kilroy GE et al. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol. 2007;212(3):702–9.

    CAS  PubMed  CrossRef  Google Scholar 

  49. Kim WS et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci. 2007;48(1):15–24.

    CAS  PubMed  CrossRef  Google Scholar 

  50. Kim Y et al. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem. 2007;20(6):867–76.

    CAS  PubMed  CrossRef  Google Scholar 

  51. Kocher AA et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7(4):430–6.

    CAS  PubMed  CrossRef  Google Scholar 

  52. Krampera M et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101(9): 3722–9.

    CAS  PubMed  CrossRef  Google Scholar 

  53. Krampera M et al. Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone. 2007;40(2):382–90.

    CAS  PubMed  CrossRef  Google Scholar 

  54. Kuethe F et al. Lack of regeneration of myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans with large anterior myocardial infarctions. Int J Cardiol. 2004;97(1):123–27.

    PubMed  CrossRef  Google Scholar 

  55. Kuznetsov SA, Friedenstein AJ, Robey PG. Factors required for bone marrow stromal fibroblast colony formation in vitro. Br J Haematol. 1997;97(3):561–70.

    CAS  PubMed  CrossRef  Google Scholar 

  56. Kuznetsov SA et al. Circulating skeletal stem cells. J Cell Biol. 2001;153(5):1133–40.

    CAS  PubMed  CrossRef  Google Scholar 

  57. Lee JH, Kemp DM. Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochem Biophys Res Commun. 2006;341(3):8 82–8.

    CAS  PubMed  CrossRef  Google Scholar 

  58. Lee RH et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5(1):54–63.

    CAS  PubMed  CrossRef  Google Scholar 

  59. Liechty KW et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med. 2000;6(11):1282–6.

    CAS  PubMed  CrossRef  Google Scholar 

  60. Locklin RM, Oreffo RO, Triffitt JT. Effects of TGFbeta and bFGF on the differentiation of human bone marrow stromal fibroblasts. Cell Biol Int. 1999;23(3):185–94.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Losordo DW et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation. 2002;105(17):2012–8.

    CAS  PubMed  CrossRef  Google Scholar 

  62. Makino S et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999;103(5): 697–705.

    CAS  PubMed  CrossRef  Google Scholar 

  63. Mangi AA et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003;9(9):1195–201.

    CAS  PubMed  CrossRef  Google Scholar 

  64. Martin I et al. Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology. 1997;138(10):4456–62.

    CAS  PubMed  CrossRef  Google Scholar 

  65. Martin-Rendon E et al. 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang. 2008;95(2): 137–48.

    CAS  PubMed  CrossRef  Google Scholar 

  66. McIntosh K et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells. 2006;24(5):1246–53.

    CAS  PubMed  CrossRef  Google Scholar 

  67. Miranville A et al. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 2004;110(3):349–55.

    CAS  PubMed  CrossRef  Google Scholar 

  68. Mitchell JB et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 2006;24(2): 376–85.

    PubMed  CrossRef  Google Scholar 

  69. Miyahara Y et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med. 2006;12(4):459–65.

    CAS  PubMed  CrossRef  Google Scholar 

  70. Moelker AD et al. Intracoronary delivery of umbilical cord blood derived unrestricted somatic stem cells is not suitable to improve LV function after myocardial infarction in swine. J Mol Cell Cardiol. 2007;42(4):735–45.

    CAS  PubMed  CrossRef  Google Scholar 

  71. Muehlberg F et al. Tissue resident stem cells promote breast cancer growth and metastasis. Carcinogenesis. 2009;30(4): 589–97.

    CAS  PubMed  CrossRef  Google Scholar 

  72. Musaro A et al. Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1. Proc Natl Acad Sci USA. 2004;101(5):1206–10.

    CAS  PubMed  CrossRef  Google Scholar 

  73. Nuttall ME et al. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res. 1998;13(3):371–82.

    CAS  PubMed  CrossRef  Google Scholar 

  74. Oedayrajsingh-Varma MJ et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy. 2006;8(2):166–77.

    CAS  PubMed  CrossRef  Google Scholar 

  75. Oreffo RO et al. Effects of interferon alpha on human osteoprogenitor cell growth and differentiation in vitro. J Cell Biochem. 1999;74(3):372–85.

    CAS  PubMed  CrossRef  Google Scholar 

  76. Orlic D et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410(6829):701–5.

    CAS  PubMed  CrossRef  Google Scholar 

  77. Orlic D et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA. 2001;98(18):10344–9.

    CAS  PubMed  CrossRef  Google Scholar 

  78. Osawa M et al. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 1996;273(5272):242–5.

    CAS  PubMed  CrossRef  Google Scholar 

  79. Park SR, Oreffo RO, Triffitt JT. Interconversion potential of cloned human marrow adipocytes in vitro. Bone. 1999;24(6): 549–54.

    CAS  PubMed  CrossRef  Google Scholar 

  80. Pinilla S et al. Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion. Cancer Lett. 2009;284(1): 80–5.

    CAS  PubMed  CrossRef  Google Scholar 

  81. Pittenger MF et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    CAS  PubMed  CrossRef  Google Scholar 

  82. Planat-Benard V et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004;109(5):656–63.

    PubMed  CrossRef  Google Scholar 

  83. Pricola KL et al. Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J Cell Biochem. 2009;108(3):577–88.

    CAS  PubMed  CrossRef  Google Scholar 

  84. Rangappa S et al. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg. 2003;126(1):124–32.

    CAS  PubMed  CrossRef  Google Scholar 

  85. Rehman J et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004; 109(10):1292–8.

    PubMed  CrossRef  Google Scholar 

  86. Reyes M et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood. 2001;98(9):2615–25.

    CAS  PubMed  CrossRef  Google Scholar 

  87. Rickard DJ et al. Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2. Dev Biol. 1994;161(1):218–28.

    PubMed  CrossRef  Google Scholar 

  88. Rochitte CE et al. Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation. 1998;98(10):1006–14.

    CAS  PubMed  Google Scholar 

  89. Ryden M et al. Functional characterization of human mesenchymal stem cell-derived adipocytes. Biochem Biophys Res Commun. 2003;311(2):391–7.

    CAS  PubMed  CrossRef  Google Scholar 

  90. Sadat S et al. The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochem Biophys Res Commun. 2007;363(3):674–9.

    CAS  PubMed  CrossRef  Google Scholar 

  91. Safford KM et al. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun. 2002;294(2):371–9.

    CAS  PubMed  CrossRef  Google Scholar 

  92. Sanchez-Ramos J et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164(2): 247–56.

    CAS  PubMed  CrossRef  Google Scholar 

  93. Schimrosczyk K et al. Liposome-mediated transfection with extract from neonatal rat cardiomyocytes induces transdifferentiation of human adipose-derived stem cells into cardiomyocytes. Scand J Clin Lab Invest. 2008;68(6): 464–72.

    CAS  PubMed  CrossRef  Google Scholar 

  94. Scutt A, Zeschnigk M, Bertram P. PGE2 induces the transition from non-adherent to adherent bone marrow mesenchymal precursor cells via a cAMP/EP2-mediated mechanism. Prostaglandins. 1995;49(6):383–95.

    CAS  PubMed  CrossRef  Google Scholar 

  95. Sekiya I et al. Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs). J Bone Miner Res. 2004;19(2):256–64.

    CAS  PubMed  CrossRef  Google Scholar 

  96. Sen A et al. Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. J Cell Biochem. 2001;81(2):312–9.

    CAS  PubMed  CrossRef  Google Scholar 

  97. Seo MJ et al. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun. 2005;328(1):258–64.

    CAS  PubMed  CrossRef  Google Scholar 

  98. Shim WS et al. Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun. 2004;324(2):481–8.

    CAS  PubMed  CrossRef  Google Scholar 

  99. Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241(4861):58–62.

    CAS  PubMed  CrossRef  Google Scholar 

  100. Sutherland HJ et al. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood. 1989;74(5):1563–70.

    CAS  PubMed  Google Scholar 

  101. Talens-Visconti R et al. Human mesenchymal stem cells from adipose tissue: differentiation into hepatic lineage. Toxicol In Vitro. 2007;21(2):324–9.

    CAS  PubMed  CrossRef  Google Scholar 

  102. Timper K et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun. 2006;341(4):1135–40.

    CAS  PubMed  CrossRef  Google Scholar 

  103. Toma C et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105(1):93–8.

    PubMed  CrossRef  Google Scholar 

  104. Traktuev DO et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008;102(1): 77–85.

    CAS  PubMed  CrossRef  Google Scholar 

  105. Tsutsumi S et al. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun. 2001; 288(2):413–9.

    CAS  PubMed  CrossRef  Google Scholar 

  106. Tulina N, Matunis E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science. 2001;294(5551):2546–9.

    CAS  PubMed  CrossRef  Google Scholar 

  107. Valina C et al. Intracoronary administration of autologous adipose tissue derived stem cells improves left ventricular function. Perfusion and remodeling after acute myocardial infarction. Eur Heart J. 2007;28:2667–77.

    PubMed  CrossRef  Google Scholar 

  108. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature. 2003;422(6934):901–4.

    CAS  PubMed  CrossRef  Google Scholar 

  109. von Heimburg D et al. Oxygen consumption in undifferentiated versus differentiated adipogenic mesenchymal precursor cells. Respir Physiol Neurobiol. 2005;146(2–3):107–16.

    CrossRef  CAS  Google Scholar 

  110. Vulliet PR et al. Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet. 2004;363(9411):783–4.

    PubMed  CrossRef  Google Scholar 

  111. Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve. 1995;18(12):1417–26.

    CAS  PubMed  CrossRef  Google Scholar 

  112. Walsh S et al. Expression of the developmental markers STRO-1 and alkaline phosphatase in cultures of human marrow stromal cells: regulation by fibroblast growth factor (FGF)-2 and relationship to the expression of FGF receptors 1-4. Bone. 2000;27(2):185–95.

    CAS  PubMed  CrossRef  Google Scholar 

  113. Walsh S et al. TGFbeta1 limits the expansion of the osteoprogenitor fraction in cultures of human bone marrow stromal cells. Cell Tissue Res. 2003;311(2):187–98.

    CAS  PubMed  Google Scholar 

  114. Wang EA et al. Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors. 1993;9(1):57–71.

    CAS  PubMed  CrossRef  Google Scholar 

  115. Wang JS et al. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg. 2000;120(5):999–1005.

    CAS  PubMed  CrossRef  Google Scholar 

  116. Wang X et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature. 2003;422(6934):897–901.

    CAS  PubMed  CrossRef  Google Scholar 

  117. Wehling N et al. Interleukin-1beta and tumor necrosis factor alpha inhibit chondrogenesis by human mesenchymal stem cells through NF-kappaB-dependent pathways. Arthritis Rheum. 2009;60(3):801–12.

    CAS  PubMed  CrossRef  Google Scholar 

  118. Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science. 2000;287(5457):1442–6.

    CAS  PubMed  CrossRef  Google Scholar 

  119. Wickham MQ, et al. Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin Orthop Relat Res. 2003;(412):196–212.

    Google Scholar 

  120. Wollert KC et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364(9429):141–8.

    PubMed  CrossRef  Google Scholar 

  121. Yoon J et al. Differentiation, engraftment and functional effects of pre-treated mesenchymal stem cells in a rat myocardial infarct model. Acta Cardiol. 2005;60(3):277–84.

    PubMed  CrossRef  Google Scholar 

  122. Young HE et al. Human pluripotent and progenitor cells display cell surface cluster differentiation markers CD10, CD13, CD56, and MHC class-I. Proc Soc Exp Biol Med. 1999;221(1):63–71.

    CAS  PubMed  CrossRef  Google Scholar 

  123. Yuan A et al. Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One. 2009;4(3):e4722.

    PubMed  CrossRef  CAS  Google Scholar 

  124. Yuasa S et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol. 2005;23(5):607–11.

    CAS  PubMed  CrossRef  Google Scholar 

  125. Zuk PA et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2): 211–28.

    CAS  PubMed  CrossRef  Google Scholar 

  126. Zuk PA et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Alt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Song, YH., Prantl, L., Alt, E. (2011). Differentiation and Plasticity of Stem Cells for Tissue Engineering. In: Pallua, N., Suscheck, C. (eds) Tissue Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02824-3_7

Download citation