Skip to main content

Natural and Synthetic Scaffolds

  • Chapter
  • First Online:
Tissue Engineering

Abstract

Tissue engineering is an interdisciplinary field aimed at the application of the principles and methods of engineering and life sciences toward the fundamental understanding of structure–function relationships in normal and pathological mammalian tissues and the development of biological substitutes to restore, maintain, or improve tissue functions [8, 38, 56, 57, 78, 111]. Typically, this involves collaborative efforts between materials scientists, cell and molecular biologists, immunologists, surgeons, and engineers to create replacement tissues that will be accepted by the body and promote native extracellular matrix (ECM) production. This requires the use of materials that do not activate catabolic pathways in the body, ultimately leading to fibrous encapsulation or destruction of the material [25, 78, 104, 111].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res. 2001;55(2):141–50.

    CAS  PubMed  Google Scholar 

  2. Alessandrino A et al. Electrospun silk fibroin mats for tissue engineering. Eng Life Sci. 2008;8(3):219–25.

    CAS  Google Scholar 

  3. Altman GH et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials. 2002;23:4131–41.

    CAS  PubMed  Google Scholar 

  4. Altman GH et al. Silk-based biomaterials. Biomaterials. 2003;24:401–16.

    CAS  PubMed  Google Scholar 

  5. Badylak SF. The extracellular matrix as a scaffold for tissue reconstruction. Cell Dev Biol. 2002;13:377–83.

    CAS  Google Scholar 

  6. Badylak S, Gilbert T, Myers-Irvin J. The extracellular matrix as a biologic scaffold for tissue engineering. In: van Blitterswijk C, editor. Tissue engineering. London: Academic; 2008. p. 121–43.

    Google Scholar 

  7. Badylak SF et al. Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res. 1989;47(1):74–80.

    CAS  PubMed  Google Scholar 

  8. Barnes CP et al. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev. 2007;59:1413–33.

    CAS  PubMed  Google Scholar 

  9. Bell E. Tissue engineering: a perspective. J Cell Biochem. 1991;45:239–41.

    CAS  PubMed  Google Scholar 

  10. Berry CC, Campbell G, Spadiccino A, Robertson M, Curtis AS. The influence of microscale topography on fibroblast attachment and motility. Biomaterials. 2004;25:5781–8.

    CAS  PubMed  Google Scholar 

  11. Boland ED, Espy PG, Bowlin GL. Tissue engineering scaffolds. In: Wnek G, Bowlin G, editors. Encyclopedia of biomaterials and biomedical engineering. New York: Marcel Dekker; 2004. p. 1–9.

    Google Scholar 

  12. Boland ED et al. Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning. J Macromol Sci. 2001; A38(12):1231–43.

    CAS  Google Scholar 

  13. Boland ED et al. Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly(glycolic acid) for tissue engineering. J Biomed Mater Res B Appl Biomater. 2004;71B:144–52.

    CAS  Google Scholar 

  14. Boland ED et al. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci. 2004; 9:1422–32.

    CAS  PubMed  Google Scholar 

  15. Boland ED et al. Electrospinning polydioxanone for biomedical applications. Acta Biomater. 2005;1:115–23.

    PubMed  Google Scholar 

  16. Bowlin GL, Simpson DG. Tissue-engineering scaffolds: can we re-engineer mother nature? Expert Rev Med Devices. 2006;3(1):9–15.

    PubMed  Google Scholar 

  17. Chamberlain G et al. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25:2739–49.

    CAS  PubMed  Google Scholar 

  18. Chen VJ, Ma PX. Nano-fibrous poly(l-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials. 2004;25:2065–73.

    CAS  PubMed  Google Scholar 

  19. Cobb MA et al. Porcine small intestinal submucosa as a dural substitute. Surg Neurol. 1999;51(1):99–104.

    CAS  PubMed  Google Scholar 

  20. Daamen WF et al. Tissue response of defined collagen-elastin scaffolds in young and adult rats with special attention to calcification. Biomaterials. 2005;26:81–92.

    CAS  PubMed  Google Scholar 

  21. Daamen WF et al. A biomaterial composed of collagen and solubilized elastin enhances angiogenesis and elastic fiber formation without calcification. Tissue Eng A. 2007; 14(3):349–60.

    Google Scholar 

  22. Debelle L et al. The secondary structure and architecture of human elastin. Eur J Biochem. 1998;258:533–9.

    CAS  PubMed  Google Scholar 

  23. Engel E et al. Nanotechnology in regenerative medicine: the materials side. Trends Biotechnol. 2007;26(1):39–47.

    PubMed  Google Scholar 

  24. Farach-Carson MC, Wagner RC, Kiick KL. Extracellular matrix: structure, function, and applications to tissue engineering. In: Fisher JP, Mikos AG, Bronzino JD, editors. Tissue engineering. Boca Raton: CRC Press; 2007. p.3-1–22.

    Google Scholar 

  25. Fecek C et al. Chondrogenic derivatives of embryonic stem cells seeded into 3D polycaprolactone scaffolds generated cartilage tissue in vivo. Tissue Eng A. 2008;8:1403–13.

    Google Scholar 

  26. Freed LE et al. Biodegradable polymer scaffolds for tissue engineering. Biotechnology. 1994;12:689–93.

    CAS  PubMed  Google Scholar 

  27. Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials. 2005;26:4139–47.

    CAS  PubMed  Google Scholar 

  28. Garcia-Fuentes M et al. The effect of hyaluronic acid on silk fibroin conformation. Biomaterials. 2008;29:633–42.

    CAS  PubMed  Google Scholar 

  29. Gentleman E et al. Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials. 2003;24(21):3805–13.

    CAS  PubMed  Google Scholar 

  30. Gentleman E et al. Development of ligament-like structural organization and properties in cell-seeded collagen scaffolds in vitros. Ann Biomed Eng. 2006;34(5):726–36.

    PubMed  Google Scholar 

  31. Ghasemi-Mobarakeh L et al. Electrospun poly(e-carpolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29:4532–9.

    CAS  PubMed  Google Scholar 

  32. Gomes M et al. Natural polymers in tissue engineering applications. In: van Blitterswijk C, editor. Tissue engineering. San Diego: Elsevier; 2008. p. 145–92.

    Google Scholar 

  33. Griffith CK, Miller C, Sainson RC, Calvert JW, Jeon NL, Hughes CC, et al. Diffusion limits of an in vitros thick prevascularized scaffold. Tissue Eng. 2005;11(1/2):257–66.

    CAS  PubMed  Google Scholar 

  34. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cells Mater. 2003;5:1–16.

    CAS  Google Scholar 

  35. Hartgerink JD, Beniash E, Stupp SL. Self-assembly and mineralization of peptide-amphiphil nanofibers. Science. 2001;294:1684–8.

    CAS  PubMed  Google Scholar 

  36. Hartgerink JD, Beniash E, Stupp SL. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Chemistry. 2002;99(8):5133–8.

    CAS  Google Scholar 

  37. Heineken FG, Skalak R. Tissue engineering: a brief overview. J Biomech Eng. 1991;113:111.

    Google Scholar 

  38. Heydarkhan-Hagvall S et al. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials. 2008;29(19):2907–14.

    CAS  PubMed  Google Scholar 

  39. Huang JI, Yoo JU, Goldberg VM. Orthopedic applications of stem cells. In: Lanza R et al., editors. Essentials of stem cell biology. Burlington: Elsevier Academic; 2006. p. 449–56.

    Google Scholar 

  40. Huss FRM, Kratz G. Mammary epithelial cell and adipocyte co-culture in a 3-D matrix: the first step towards tissue-engineered human breast tissue. Cells Tissues Organs. 2001;169:361–7.

    CAS  PubMed  Google Scholar 

  41. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomater Sci Polym Ed. 2001;12(1):107–24.

    CAS  PubMed  Google Scholar 

  42. Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 2004;22(7):354–62.

    CAS  PubMed  Google Scholar 

  43. Hutmacher D et al. Scaffold design and fabrication. In: van Blitterswijk C, editor. Tissue engineering. San Diego: Elsevier; 2008. p. 403–54.

    Google Scholar 

  44. Ishaug-Riley SL et al. Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films. Biomaterials. 1999;20:2245–56.

    CAS  PubMed  Google Scholar 

  45. Jayaraman K et al. Recent advances in polymer nanofibers. J Nanosci Nanotechnol. 2004;4(1):52–65.

    CAS  PubMed  Google Scholar 

  46. Jeong SI et al. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials. 2007;28:1115–22.

    CAS  PubMed  Google Scholar 

  47. Jiankang H et al. Preparation of chitosan-gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering. Acta Biomater. 2008;5(1):453–61.

    PubMed  Google Scholar 

  48. Jin HJ et al. Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules. 2002;5(3): 786–92.

    Google Scholar 

  49. Jin HJ et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials. 2004;25(6): 1039–47.

    CAS  PubMed  Google Scholar 

  50. Kannan RY, Salacinski HJ, Sales K, Butler P, Seifalian AM. The roles of tissue engineering and vascularisation in the development of micro-vascular networks: a review. Biomaterials. 2005;26:1857–75.

    CAS  PubMed  Google Scholar 

  51. Karande TS, Ong JL, Agrawal CM. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng. 2004;32(12):1728–43.

    PubMed  Google Scholar 

  52. Kawahara Y et al. Structure for electro-spun silk fibroin nanofibers. J Appl Polym Sci Symp. 2008;107:3681–4.

    CAS  Google Scholar 

  53. Kidoaki S, Kwon IK, Matsuda T. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials. 2005;26:37–46.

    CAS  PubMed  Google Scholar 

  54. Kim K-S et al. Control of degradation rate and hydrophilicity in electrospun non-woven poly(D, L-lactide) nanofiber scaffolds for biomedical applications. Biomaterials. 2003; 24:4977–85.

    CAS  PubMed  Google Scholar 

  55. Langer R. Editorial: tissue engineering: perspectives, challenges, and future directions. Tissue Eng. 2007;13(1):1.

    PubMed  Google Scholar 

  56. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    CAS  PubMed  Google Scholar 

  57. Lantz GC et al. Small intestinal submucosa as a vascular graft: a review. J Invest Surg. 1993;6(3):297–310.

    CAS  PubMed  Google Scholar 

  58. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101(7):1869–79.

    CAS  PubMed  Google Scholar 

  59. Levesque SG, Lim RM, Shoichet MS. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials. 2005;26:7436–46.

    CAS  PubMed  Google Scholar 

  60. Li S, De Wijn JR, Li J, Layrolle P, De Groot K. Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng. 2003;9(3):535–48.

    CAS  PubMed  Google Scholar 

  61. Lim DW et al. In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair. Biomacromolecules. 2008;9(1):222–30.

    CAS  PubMed  Google Scholar 

  62. Liu H et al. The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering. Biomaterials. 2008;29:662–74.

    CAS  PubMed  Google Scholar 

  63. Mano JF et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface. 2007;4: 999–1030.

    CAS  PubMed  Google Scholar 

  64. Martins-Green M. The dynamics of cell–ECM interactions with implications for tissue engineering. In: Lanza R, Langer R, Chick W, editors. Principles of tissue engineering. Georgetown: R. G. Landes; 1997. p. 23–46.

    Google Scholar 

  65. Matthews JA, Simpson DG, Wnek GE, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3:232–8.

    CAS  PubMed  Google Scholar 

  66. McClure MJ et al. Cross-linking electrospun polydioxanone-soluble elastin blends: material characterization. J Eng Fibers Fabrics. 2008;3(1):1–10.

    Google Scholar 

  67. McManus M et al. Mechanical properties of electrospun fibrinogen structures. Acta Biomater. 2006;2:19–28.

    PubMed  Google Scholar 

  68. McManus MC et al. Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model. J Biomed Mater Res A. 2007;81(2):299–309.

    PubMed  Google Scholar 

  69. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21:2335–46.

    CAS  PubMed  Google Scholar 

  70. Mikos AG, Temenoff JS. Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol. 2000;3:114–9.

    Google Scholar 

  71. Min B-M et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitros. Biomaterials. 2004;25:1289–97.

    CAS  PubMed  Google Scholar 

  72. Min B-M et al. Regenerated silk fibroin nanofibers: water vapor-induced structural changes and their effects on the behavior of normal human cells. Macromol Biosci. 2006; 6:285–92.

    CAS  PubMed  Google Scholar 

  73. Mooney DJ, Langer RS. Engineering biomaterials for tissue engineering: the 10–100 micron size scale. In: Palsson B, Hubbell JA, Plonsey R, Bronzino JD, editors. Tissue engineering. Boca Raton: CRC Press; 2000.

    Google Scholar 

  74. Mosesson MW, Siebenlist KR, Meh DA. The structure and biological features of fibrinogen and fibrin. Ann NY Acad Sci. 2001;936:11–30.

    CAS  PubMed  Google Scholar 

  75. Nerem RM. Tissue engineering: the hope, the hype and the future. Tissue Eng. 2006;12(5):1143–50.

    CAS  PubMed  Google Scholar 

  76. Norman JJ, Desai TA. Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Ann Biomed Eng. 2006;34(1):89–101.

    PubMed  Google Scholar 

  77. Palsson BO, Sangeeta NB. Tissue engineering. Upper Saddle River: Pearson Prentice Hall; 2004.

    Google Scholar 

  78. Pancrazio JJ, Wang F, Kelley CA. Enabling tools for tissue engineering. Biosens Bioelectron. 2007;22:2803–11.

    CAS  PubMed  Google Scholar 

  79. Prabhakaran MP et al. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng A. 2008;14(11):1787–97.

    CAS  Google Scholar 

  80. Rabaud M, Lefebvre F, Ducassou D. In vitro association of type III collagen with elastin and with its solubilized peptides. Biomaterials. 1991;12(3):313–9.

    CAS  PubMed  Google Scholar 

  81. Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng. 2004; 6:41–75.

    CAS  PubMed  Google Scholar 

  82. Riddle KW, Mooney DJ. Role of poly(lactide-co-glycolide) particle size on gas-foamed scaffolds. J Biomater Sci Polym Ed. 2004;15(12):1561–70.

    CAS  PubMed  Google Scholar 

  83. Riley SL et al. Formulation of PEG-based hydrogels affects tissue-engineered cartilage construct charateristics. J Mater Sci Mater Med. 2001;12:983–90.

    CAS  PubMed  Google Scholar 

  84. Rosso F et al. Smart materials as scaffolds for tissue engineering. J Cell Physiol. 2005;203:465–70.

    CAS  PubMed  Google Scholar 

  85. Sahoo S et al. Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng. 2006;12(1):91–9.

    CAS  PubMed  Google Scholar 

  86. Sahoo, S., et al. Towards an ideal polymer scaffold for tendon/ligament tissue engineering. In: The International Society for Optical Engineering. Singapore: Third Intl Conf on Experimental Mechanics and Third Conf. of the Asian Committee on Experimental Mechanics. 2005.

    Google Scholar 

  87. Sander EA, Nauman EA. Permeability of musculoskeletal tissues and scaffolding materials: experimental results and theoretical predictions. Crit Rev Biomed Eng. 2003;31(1): 1–26.

    PubMed  Google Scholar 

  88. Sell SA et al. Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts. Biomed Mater. 2006;1:72–80.

    CAS  PubMed  Google Scholar 

  89. Sell S et al. Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers. Poly Int. 2007;56(11):1349–60.

    CAS  Google Scholar 

  90. Seo Y-K et al. The biocompatibility of silk scaffold for tissue engineering ligaments. Key Eng Mater. 2007; 342–343:73–6.

    Google Scholar 

  91. Simionescu DT et al. Biocompatibility and remodeling potential of pure arterial elastin and collagen scaffolds. Biomaterials. 2006;27(5):702–13.

    CAS  PubMed  Google Scholar 

  92. Smith LA, Ma PX. Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces. 2004;39:125–31.

    CAS  PubMed  Google Scholar 

  93. Song E et al. Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials. 2006; 27(15):2951–61.

    CAS  PubMed  Google Scholar 

  94. Suckow MA et al. Enhanced bone regeneration using porcine small intestinal submucosa. J Invest Surg. 1999;12(5): 277–87.

    CAS  PubMed  Google Scholar 

  95. Sukigara S et al. Regeneration of Bombyx mori silk by electrospinning – part 1: processing parameters and geometric properties. Polymer. 2003;44:5721–7.

    CAS  Google Scholar 

  96. Tan H et al. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomater. 2008;5(1):328–37.

    PubMed  Google Scholar 

  97. Tang S, Spector M. Incorporation of hyaluronic acid into collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis. Biomed Mater. 2007; 2(3):S135–41.

    CAS  PubMed  Google Scholar 

  98. Telemeco TA, Ayres C, Bowlin GL, Wnek GE, Boland ED, Cohen N, et al. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta Biomater. 2005; 1(4):377–85.

    CAS  PubMed  Google Scholar 

  99. Thorvaldsson A et al. Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules. 2008;9:1044–9.

    CAS  PubMed  Google Scholar 

  100. Toh SL et al. Novel silk scaffolds for ligament tissue engineering applications. Key Eng Mater. 2006;326–328(1): 727–30.

    Google Scholar 

  101. Vacanti CA. History of tissue engineering and a glimpse into its future. Tissue Eng. 2006;12(5):1137–42.

    PubMed  Google Scholar 

  102. Vacanti JP, Vacanti CA. The challenge of tissue engineering. In: Lanza R, Langer R, Chick W, editors. Principles of tissue engineering. Georgetown: R.G. Landes; 1997.

    Google Scholar 

  103. Vacanti JP et al. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg. 1988;23(1 pt 2):3–9.

    CAS  PubMed  Google Scholar 

  104. van Dijkhuizen-Radersma R et al. Degradable polymers for tissue engineering. In: van Blitterswijk C, editor. Tissue engineering. San Diego: Elsevier; 2008. p. 193–221.

    Google Scholar 

  105. Venugopal J, Ramakrishna S. Applications of polymer nanofibers in biomedicine and biotechnology. Appl Biochem Biotechnol. 2005;125:147–57.

    CAS  PubMed  Google Scholar 

  106. Walpoth BH, Bowlin GL. The daunting quest for a small diameter vascular graft. Expert Rev Med Devices. 2005;2(6):647–51.

    PubMed  Google Scholar 

  107. Wang M et al. Mechanical properties of electrospun silk fibers. Macromolecules. 2004;37:6856–64.

    CAS  Google Scholar 

  108. Wang Y et al. Stem cell-based tissue engineering with silk biomaterials. Biomaterials. 2006;27:6064–82.

    CAS  PubMed  Google Scholar 

  109. Weigel T, Schinkel G, Lendlein A. Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev Med Devices. 2006;3(6):835–51.

    CAS  PubMed  Google Scholar 

  110. Wen X, Shi D, Zhang N. Applications of nanotechnology in tissue engineering. In: Nalwa HS, editor. Handbook of nanostructured biomaterials and their applications in nanobiotechnology. Los Angeles: American Scientific Publishers; 2005.

    Google Scholar 

  111. Wnek GE, Carr ME, Simpson DG, Bowlin GL. Electrospinning of nanofiber fibrinogen structures. Nano Lett. 2003;3(2):213–6.

    CAS  Google Scholar 

  112. Wong WH, Mooney DJ. Synthesis and properties of biodegradable polymers used as synthetic matrices for tissue engineering. In: Atala A, Mooney D, editors. Synthetic biodegradable polymer scaffold. Boston: Birkhauser; 1997. p. 50–82.

    Google Scholar 

  113. Yang C et al. The application of recombinant human collagen in tissue engineering. BioDrugs. 2004;18(2):103–19.

    CAS  PubMed  Google Scholar 

  114. Yang F et al. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26:2603–10.

    CAS  PubMed  Google Scholar 

  115. Yoo JJ et al. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology. 1998;51:221–5.

    CAS  PubMed  Google Scholar 

  116. Yoon DM, Fisher JP. Polymeric scaffolds for tissue engineering applications. In: Fisher JP, Mikos AG, Bronzino JD, editors. Tissue engineering. Boca Raton: CRC Press; 2007. p. 8-1–18.

    Google Scholar 

  117. Yoshimoto H et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24(12):2077–82.

    CAS  PubMed  Google Scholar 

  118. Zalipsky S. Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates. Bioconjug Chem. 1995;6(2):150–65.

    CAS  PubMed  Google Scholar 

  119. Zarkoob S et al. Structure and morphology of electrospun silk nanofibers. Polymer. 2004;45:3973–7.

    CAS  Google Scholar 

  120. Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol. 2003;21(10):1171–8.

    CAS  PubMed  Google Scholar 

  121. Zhang R, Ma PX. Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res. 2000;52(2):430–8.

    CAS  PubMed  Google Scholar 

  122. Zhang R, Ma PX. Processing of polymer scaffolds: phase separation. In: Atala A, Lanza RP, editors. Methods of tissue engineering. San Diego: Academic; 2002. p. 715–24.

    Google Scholar 

  123. Zhang Y et al. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater. 2005;72B:156–65.

    CAS  Google Scholar 

  124. Zhang S et al. Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. J Biomed Mater Res A. 2008;90(3): 671–9.

    Google Scholar 

  125. Zhao C, Asakura T. Structure of silk studied with NMR. Prog Nucl Magn Reson Spectrosc. 2001;39:301–52.

    CAS  Google Scholar 

  126. Zong X, Bien H, Chung CY, Yin L, Fang D, Hsiao BS, et al. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials. 2005;26:5330–8.

    CAS  PubMed  Google Scholar 

  127. Zong X et al. Structure and morphology changes during in vitros degradation of electrospun poly(glycolide-co-lactide) nanofiber membrane. Biomacromolecules. 2003;4: 416–23.

    CAS  PubMed  Google Scholar 

  128. Zuo B, Liu L, Wu Z. Effect on properties of regenerated silk fibroin fiber coagulated with aqueous methanol/ethanol. J Appl Polym Sci Symp. 2007;106:53–9.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary L. Bowlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Wolfe, P.S., Sell, S.A., Bowlin, G.L. (2011). Natural and Synthetic Scaffolds. In: Pallua, N., Suscheck, C. (eds) Tissue Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02824-3_3

Download citation

Publish with us

Policies and ethics