An Empirical Study on the Use of Web-COBRA and Web Objects to Estimate Web Application Development Effort

  • Sergio Di Martino
  • Filomena Ferrucci
  • Carmine Gravino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5648)

Abstract

We have performed a replication of a previous study in order to further assess the effectiveness of Web-COBRA method, with the Web Objects measure, in predicting Web application development effort. The results of the empirical analysis confirm the interesting results of the previous study.

Keywords

Effort estimation method Web-COBRA Web applications 

References

  1. 1.
    Abrahão, S.M., Pastor, O.: Measuring the functional size of Web applications. International Journal of Web Engineering and Technology 1(1), 5–16 (2003)CrossRefGoogle Scholar
  2. 2.
    Abrahão, S.M., Pastor, O., Poels, G.: Evaluating a Functional Size Measurement Method for Web Applications: An Empirical Analysis. In: Proceedings of International Software Metrics Symposium (METRICS 2004), pp. 358–369 (2004)Google Scholar
  3. 3.
    Baresi, L., Morasca, S.: Three Empirical Studies on Estimating the Design Effort of Web Applications. Transaction On Software Engineering and Methodology 16(4) (2007)Google Scholar
  4. 4.
    Briand, L., El Emam, K., Bomarius, F.: COBRA: A Hybrid Method for Software Cost Estimation, Benchmarking, and Risk Assessment. In: Proceedings of the International Conference on Software Engineering (ICSE 1998), pp. 390–399 (1998)Google Scholar
  5. 5.
    Cohen, J.: Statistical Power Analysis for the Behavioral Science. Lawrence Erlbaum Hillsdale, New Jersey (1988)MATHGoogle Scholar
  6. 6.
    Conte, D., Dunsmore, H.E., Shen, V.Y.: Software engineering metrics and models. The Benjamin/Cummings Publishing Company, Inc. (1986)Google Scholar
  7. 7.
    COSMIC. Web site (2007), http://www.cosmicon.com
  8. 8.
    Costagliola, G., Di Martino, S., Ferrucci, F., Gravino, C., Tortora, G., Vitiello, G.: Effort estimation modeling techniques: a case study for Web applications. In: Proceedings of International Conference on Web Engineering (ICWE 2006), pp. 9–16 (2006)Google Scholar
  9. 9.
    Costagliola, G., Di Martino, S., Ferrucci, F., Gravino, C., Tortora, G., Vitiello, G.: A COSMIC-FFP: Approach to Predict Web Application Development Effort. Journal of Web Engineering 5(2), 93–120 (2006)Google Scholar
  10. 10.
    IFPUG, Function point counting practices manual, release 4.2.1 (2004)Google Scholar
  11. 11.
    Kampenes, V., Dybå, T., Hannay, J.E., Sjøberg, D.I.K.: A Systematic Review of Effect Size in Software Engineering Experiments. Information and Software Technology 4(11-12), 1073–1086 (2007)CrossRefGoogle Scholar
  12. 12.
    Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M.: Case Studies for Method and Tool Evaluation. IEEE Software 12(4), 52–62 (1995)CrossRefGoogle Scholar
  13. 13.
    Kitchenham, B.A., Pickard, L.M., MacDonell, S.G., Shepperd, M.J.: What accuracy statistics really measure. IEE Proceedings – Software 148(3), 81–85 (2001)CrossRefGoogle Scholar
  14. 14.
    Linstone, H.A., Turoff, M.: The Delphi Method: Techniques and Applications. Addison- Wesley Publishing Co. Inc. (1975)Google Scholar
  15. 15.
    Mendes, E., Counsell, S., Mosley, N.: Comparison of Web Size Measures for Predicting Web Design and Authoring Effort. IEE Proceedings-Software 149(3), 86–92 (2002)CrossRefGoogle Scholar
  16. 16.
    Mendes, E., Counsell, S., Mosley, N., Triggs, C., Watson, I.: A Comparative Study of Cost Estimation Models for Web Hypermedia Applications. Empirical Software Engineering 8(2), 163–196 (2003)CrossRefGoogle Scholar
  17. 17.
    Mendes, E., Counsell, S., Mosley, N., Triggs, C., Watson, I.: A Comparison of Development Effort Estimation Techniques for Web Hypermedia Applications. In: Proceedings of International Software Metrics Symposium (METRICS 2002), pp. 131–140 (2002)Google Scholar
  18. 18.
    Mendes, E., Kitchenham, B.: Further Comparison of Cross-company and Within-company Effort Estimation Models for Web Applications. In: Proceedings of International Software Metrics Symposium (METRICS 2004), pp. 348–357 (2004)Google Scholar
  19. 19.
    Mendes, E., Mosley, N.: Bayesian Network Models for Web Effort Prediction: A Comparative Study. IEEE Transactions on Software Engineering (August 1, 2008), http://doi.ieeecomputersociety.org/10.1109/TSE.2008.64Google Scholar
  20. 20.
    Reifer, D.: Web-Development: Estimating Quick-Time-to-Market Software. IEEE Software 17(8), 57–64 (2000)CrossRefGoogle Scholar
  21. 21.
    Ruhe, M., Jeffery, R., Wieczorek, I.: Cost estimation for Web applications. In: Proceedings of the International Conference on Software Engineering (ICSE 2003), pp. 285–294 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sergio Di Martino
    • 1
  • Filomena Ferrucci
    • 2
  • Carmine Gravino
    • 2
  1. 1.University of Napoli “Federico II”NapoliItaly
  2. 2.University of SalernoFisciano (SA)Italy

Personalised recommendations