Skip to main content

Noncovalent Organocatalysis Based on Hydrogen Bonding: Elucidation of Reaction Paths by Computational Methods

Part of the Topics in Current Chemistry book series (TOPCURRCHEM,volume 291)

Abstract

In this article, the functions of hydrogen bonds in organocatalytic reactions are discussed on atomic level by presenting DFT studies of selected examples. Theoretical investigation provides a detailed insight in the mechanism of substrate activation and orientation, and the stabilization of transition states and intermediates by hydrogen bonding (e.g. oxyanion hole). The examples selected comprise stereoselective catalysis by bifunctional thioureas, solvent catalysis by fluorinated alcohols in epoxidation by hydrogen peroxide, and intramolecular cooperative hydrogen bonding in TADDOL-type catalysts.

Keywords

  • Organocatalysis
  • hydrogen bonding
  • reaction mechanism on DFT level
  • oxyanion hole
  • bifunctional thiourea catalysis
  • catalytic solvents

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-02815-1_3
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-02815-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   399.99
Price excludes VAT (USA)
Hardcover Book
USD   549.99
Price excludes VAT (USA)
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Scheme 5
Scheme 6
Fig. 4
Fig. 5
Scheme 7
Fig. 6
Fig. 7
Fig. 8
Scheme 8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Scheme 9
Fig. 18
Scheme 10
Scheme 11
Fig. 19

Notes

  1. 1.

    The Hartree-Fock theory neglects correlations between electrons. This means that one single electron is only subjected to an average potential by the other electrons of a system. This leads, e.g., to errors in bond lengths and angles and dissociation energies. Therefore, more exact methods, the so-called post Hartree-Fock methods were developed which are either based on perturbation theory (e.g., second order Møller-Plesset-Perturbation theory, MP2), or on the variational principle (e.g., configuration interaction, CI or coupled cluster methods CC). Compared to the Hartree-Fock method, these techniques are very time consuming. Alternative approaches to electronic structure are density functional theory methods (DFT) in which the electron density distribution rather than the many electron wave function plays a central role. Difficulties in expressing the exchange part of the energy can be relieved by including a component of the exact exchange energy calculated from Hartree-Fock theory. Functionals of this type are known as hybrid functionals. Widely used for DFT-calculations is the hybrid functional B3LYP: a correlation functional developed by Becke combined with an exchange term from Lee, Yang and Parr [18-20]. It provides in many cases access to qualitatively good results at computational costs comparable to Hartree-Fock methods.

  2. 2.

    The formation of a ternary complex is entropically disfavoured relative to binary ones. However, kinetic and spectroscopic investigations [39] gave no indication of, e.g., a ping-pong mechanism, and/or the involvement of covalent intermediates

References

  1. Berkessel A, Gröger H (2005) Asymmetric Organocatalysis. Wiley, Weinheim

    CrossRef  Google Scholar 

  2. Dalko PI (ed) (2007) Enantioselectice Organocatalysis. Wiley, Weinheim

    Google Scholar 

  3. Chem Rev 2007, 107, 5413-5883, issue on Organocatalysis (List B, guest editor)

    Google Scholar 

  4. Mukherjee S, Yang JW, Hoffmann S, List B (2007) Chem Rev 107:5471-5569

    CrossRef  CAS  Google Scholar 

  5. Erkkilä A, Majander I, Pihko PM (2007) Chem Rev 107:5416-5470

    CrossRef  Google Scholar 

  6. Eder U, Sauer G, Wiechert R (1971) Angew Chem Int Ed Engl 10:496-497

    CrossRef  CAS  Google Scholar 

  7. Hajos ZG, Parrish DR (1974) J Org Chem 39:1615-1621

    CrossRef  CAS  Google Scholar 

  8. Taylor MS, Jacobsen EN (2006) Angew Chem Int Ed 45:1520-1543

    CrossRef  CAS  Google Scholar 

  9. Doyle AG, Jacobsen EN (2007) Chem Rev 107:5713-5743

    CrossRef  CAS  Google Scholar 

  10. Akiyama T (2007) Chem Rev 107:5744-5758

    CrossRef  CAS  Google Scholar 

  11. Schreiner PR, Wittkopp A (2002) Org Lett 4:217-220

    CrossRef  CAS  Google Scholar 

  12. Schreiner PR (2003) Chem Soc Rev 32:289-296

    CrossRef  CAS  Google Scholar 

  13. Kleiner CM, Schreiner PR (2006) Chem Commun 41:4315-4317

    CrossRef  Google Scholar 

  14. Kotke M, Schreiner PR (2007) Synthesis 779-790

    Google Scholar 

  15. Jencks WP (1980) Acc Chem Res 13:161-169

    CrossRef  CAS  Google Scholar 

  16. Jencks WP (1976) Acc Chem Res 9:425-432

    CrossRef  CAS  Google Scholar 

  17. Hine J (1972) J Am Chem Soc 94:5766-5771

    CrossRef  CAS  Google Scholar 

  18. Becke AD (1988) Phys Rev A 38:3098-3100

    CrossRef  CAS  Google Scholar 

  19. Becke AD (1993) J Chem Phys 98:5648-5652

    CrossRef  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785-789

    CrossRef  CAS  Google Scholar 

  21. Levine N (2000) Quantum Chemistry. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  22. Bahmanyar S, Houk KN (2001) J Am Chem Soc 123:11273-11283

    CrossRef  CAS  Google Scholar 

  23. Bahmanyar S, Houk KN (2001) J Am Chem Soc 123:12911-12912

    CrossRef  CAS  Google Scholar 

  24. Bahmanyar S, Houk KN, List B (2003) J Am Chem Soc 125:2475-2479

    CrossRef  CAS  Google Scholar 

  25. Hoang L, Bahmanyar S, Houk KN, List B (2003) J Am Chem Soc 125:16-17

    CrossRef  CAS  Google Scholar 

  26. Rankin KN, Gauld JW, Boyd RJ (2002) J Phys Chem A 106:5155-5159

    CrossRef  CAS  Google Scholar 

  27. Arnó M, Domingo LR (2002) Theor Chem Acc 108:232-239

    CrossRef  Google Scholar 

  28. Allemann C, Gordillo R, Clemente FR, Cheong PH-Y, Houk KN (2004) Acc Chem Res 37:558-569

    CrossRef  CAS  Google Scholar 

  29. Clemente FR, Houk KN (2004) Angew Chem Int Ed 43:5766-5768

    CrossRef  CAS  Google Scholar 

  30. Cleland WW, Frey PA, Gerlt JA (1998) J Biol Chem 273:25529-25532

    CrossRef  CAS  Google Scholar 

  31. Schutz CN, Warshel A (2004) PROTEINS: Struct Funct Bioinformatics 55:711-723

    CrossRef  CAS  Google Scholar 

  32. Momiyama N, Yamamoto H (2005) J Am Chem Soc 127:1080-1081

    CrossRef  CAS  Google Scholar 

  33. Seebach D, Beck AK, Heckel A (2001) Angew Chem Int Ed 40:92-138

    CrossRef  CAS  Google Scholar 

  34. Brunel JM (2005) Chem Rev 105:857-897

    CrossRef  CAS  Google Scholar 

  35. Berkessel A, Cleemann F, Mukherjee S, Müller TN, Lex J (2005) Angew Chem Int Ed 44:807-811

    CrossRef  CAS  Google Scholar 

  36. Berkessel A, Mukherjee S, Cleemann F, Müller TN, Lex J (2005) Chem Commun 1898-1900

    Google Scholar 

  37. Berkessel A, Mukherjee S, Müller TN, Cleemann F, Roland K, Brandenburg M, Neudörfl J-M (2006) Org Biomol Chem 4:4319-4330

    CrossRef  CAS  Google Scholar 

  38. For the related organocatalytic ring-opening of oxazinones, see: Berkessel A, Cleemann F, Mukherjee S (2005) Angew Chem Int Ed 44:7466-7469

    CrossRef  CAS  Google Scholar 

  39. Berkessel A, Cleemann F, Mukherjee S, Etzenbach-Effers K, Schlörer N, submitted

    Google Scholar 

  40. Reed E, Curtiss LA, Weinold F (1988) Chem Rev 88:899-926

    CrossRef  CAS  Google Scholar 

  41. Whiting AK, Peticolas WL (1994) Biochemistry 33:552-561 Selected reference with emphasis on the LBHB character of serine proteases’ oxy anion hole

    CrossRef  CAS  Google Scholar 

  42. Steiner T (2002) Angew Chem Int Ed 41:48-76

    CrossRef  CAS  Google Scholar 

  43. Okino T, Hoashi Y, Takemoto Y (2003) J Am Chem Soc 125:12672-12673

    CrossRef  CAS  Google Scholar 

  44. Okino T, Hoashi Y, Furukawa T, Xu X, Takemoto Y (2005) J Am Chem Soc 127:119-125

    CrossRef  CAS  Google Scholar 

  45. Takemoto Y (2005) Org Biomol Chem 3:4299-4306

    CrossRef  CAS  Google Scholar 

  46. Hamza A, Schubert G, Soós T, Pápai I (2006) J Am Chem Soc 128:13151-13160

    CrossRef  CAS  Google Scholar 

  47. Zhu R, Zhang D, Wu J, Liu C (2006) Tetrahedron Asymmetry 17:1611-1616

    CrossRef  CAS  Google Scholar 

  48. Hammar P, Marcelli T, Hiemstra H, Himo F (2007) Adv Synth Catal 349:2537-2548

    CrossRef  CAS  Google Scholar 

  49. Berkessel A, Adrio JA, Hüttenhain D, Neudörfl JM (2006) J Am Chem Soc 128:8421-8426

    CrossRef  CAS  Google Scholar 

  50. Schaal H, Häber T, Suhm MA (2000) J Phys Chem 104:265-275

    CrossRef  CAS  Google Scholar 

  51. Maiti NC, Zhu Y, Carmichael I, Serianni AS, Anderson VE (2006) J Org Chem 71:2878-2880

    CrossRef  CAS  Google Scholar 

  52. Berkessel A, Adrio JA (2006) J Am Chem Soc 128:13412-13420

    CrossRef  CAS  Google Scholar 

  53. Dryuk VG (1976) Tetrahedron 32:2855-2866

    CrossRef  CAS  Google Scholar 

  54. de Visser SP, Kaneti J, Neumann R, Shaik S (2003) J Org Chem 68:2903-2912

    CrossRef  Google Scholar 

  55. Huang Y, Unni AK, Thadani AN, Stankovic AR, Rawal VH (2003) Nature 424:146

    CrossRef  CAS  Google Scholar 

  56. Unni AK, Takenaka N, Yamamoto H, Rawal VH (2005) J Am Chem Soc 127:1336-1337

    CrossRef  CAS  Google Scholar 

  57. Gordillo R, Dudding T, Anderson CD, Houk KN (2007) Org Lett 9:501-503

    CrossRef  CAS  Google Scholar 

  58. Zhang X, Du H, Wang Z, Wu Y-D, Ding K (2006) J Org Chem 71:2862-2869

    CrossRef  CAS  Google Scholar 

  59. Maseras F, Morokuma KJ (1995) J Comput Chem 16:1170

    CrossRef  CAS  Google Scholar 

  60. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma KJ (1996) J Phys Chem 100:19357

    CrossRef  CAS  Google Scholar 

  61. Stewart JJP (1989) J Comput Chem 10:209

    CrossRef  CAS  Google Scholar 

  62. Stewart JJP (1989) J Comput Chem 10:221

    CrossRef  CAS  Google Scholar 

  63. Du H, Zhao D, Ding K (2004) Chem Eur J 10:5964

    CrossRef  CAS  Google Scholar 

  64. Reed AE, Weinstock RB, Weinold F (1985) J Chem Phys 83:735

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht Berkessel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Etzenbach-Effers, K., Berkessel, A. (2010). Noncovalent Organocatalysis Based on Hydrogen Bonding: Elucidation of Reaction Paths by Computational Methods. In: List, B. (eds) Asymmetric Organocatalysis. Topics in Current Chemistry, vol 291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02815-1_3

Download citation